
COPHASALTM

Optical Design Software

User’s Manual

XLOPTIX LLC
www.xloptix.com

cophasal_support@xloptix.com

Version 1.7.9

July 28, 2025

www.xloptix.com
cophasal_support@xloptix.com

Notice

Copyright 2024-2025 by XLOPTIX LLC. All rights reserved. No part of
this manual or the software may be reproduced, distributed, or transmitted,
without the prior written permission of the author.

Trademarks

COPHASAL is a trademark of XLOPTIX LLC. All other product names or
trademarks are property of their respective owners.

Disclaimer

This manual and its accompanying software are provided under a separate
license agreement. Use or reproduction is strictly prohibited except as
explicitly permitted by that agreement. Information in this manual and the
software it describes is subject to change without notice. Both the software
and manual are provided ’as is,’ without warranties of any kind. XLOPTIX
LLC shall not be held liable for any commercial losses, including lost
profits, arising from the use of this software or manual.

Contents

Release Note 7

1 Introduction 10
1.1 Conventions . 10

1.1.1 Polarization . 10
1.1.2 Thin Film . 11

1.2 Units . 11
1.3 System Requirements . 12
1.4 Installation . 12

1.4.1 License . 12
1.5 User Interface . 13
1.6 User Setup . 13
1.7 Support . 14

2 Quick Start Example 15
2.1 Blank Lens . 15
2.2 Singlet Start . 17
2.3 Singlet Start Performance . 19
2.4 Optimization . 20
2.5 Final Performance . 21
2.6 List Ray . 21
2.7 Paraxial Image Location . 23

3 Lua Primer 24
3.1 Global and Local Scope . 25
3.2 Nil . 25
3.3 Lexical Scoping . 26
3.4 Types and Values . 26

2

CONTENTS COPHASAL

3.5 Basic Operations . 26
3.6 Logical Operations . 26
3.7 Arithmetic Operations . 27
3.8 Relational Operations . 28
3.9 Bitwise Operations . 28
3.10 Strings . 29
3.11 Tables . 29
3.12 Functions . 32
3.13 Control Structures . 33
3.14 Understanding Error Messages 35

4 Command Line Interface 37
4.1 Parametric Actions . 37

4.1.1 Zoomers . 38
4.1.2 Reactors . 41
4.1.3 Variators . 42
4.1.4 Parameter Functions 43
4.1.5 Alternative Compact Interface 51

4.2 Utilities . 52
4.2.1 General Utility Functions 52
4.2.2 Data Display Functions 55
4.2.3 File System Functions 61
4.2.4 Undo . 64
4.2.5 Lens Utilities . 65

4.3 System Settings . 66
4.3.1 Fields . 66
4.3.2 Wavelengths . 67
4.3.3 Reference Rays . 69

4.4 Glasses . 71
4.5 Films . 75
4.6 Surfaces . 77

4.6.1 Surface Related . 77
4.6.2 Stop Related . 79
4.6.3 Global Referencing . 80

4.7 Rays . 81
4.7.1 User Rays . 82
4.7.2 Ray Information . 83

4.8 Analysis . 87

CONTENTS COPHASAL

4.8.1 Thin Film . 87
4.8.2 First Order . 90
4.8.3 Geometric . 91

4.9 Optimization . 93
4.9.1 Solver Setup . 94
4.9.2 Cost Function, Builtin 97

4.10 Tolerance Analysis . 98
4.11 Script Generators . 98

5 System Settings 103
5.1 System Parameters . 103

5.1.1 Pupil . 103
5.1.2 Polarization . 104
5.1.3 Meridional Plane Selection 104
5.1.4 Focal Mode Selection 105

5.2 Wavelengths . 105
5.3 Fields . 106

5.3.1 Vignetting Factors . 106
5.4 Reference Rays . 107

6 Glasses 109
6.1 Index of Refraction . 109

6.1.1 Interpolate . 109
6.1.2 Gases . 109
6.1.3 Sellmeier . 110

6.2 Absorption . 110
6.2.1 Interpolate . 110
6.2.2 Ordinary . 111

6.3 Environmental Adjustments 111
6.3.1 Schott DNDT Equation 111
6.3.2 Thermal Expansion, Omega 111

6.4 Catalog Glasses . 112
6.4.1 Provided Catalogs . 112

7 Thin Films 113
7.1 Layer Parameters . 113
7.2 Optimization Example . 114

CONTENTS COPHASAL

8 Surfaces 118
8.1 Surface Lists . 118

8.1.1 Non-Sequential . 119
8.1.2 Sequential . 119

8.2 Common Surface Parameters 121
8.3 Coordinate System . 123

8.3.1 Reposition . 123
8.3.2 Global Referencing . 125
8.3.3 Best Practice . 127

8.4 Optical Properties . 127
8.4.1 Refract Mode . 127
8.4.2 Diffractive Properties 128
8.4.3 Thin Film and Related Properties 128
8.4.4 Apodization . 130

8.5 Aperture . 130
8.5.1 Automatic Aperture 130
8.5.2 User Defined Apertures 130

8.6 Ignore Surface . 133

9 Surface Types 134
9.1 Sphere . 134
9.2 Conic . 134
9.3 QCON Asphere . 135
9.4 Toric . 136
9.5 NSIN and NSOUT . 137

10 Analysis 138
10.1 Ray Tracing and Analysis . 138

10.1.1 Starting of Rays . 138
10.2 First Order Analysis . 139
10.3 Geometric Analysis . 139

10.3.1 Spot Size . 139
10.4 Thin Film Analysis . 139

11 Optimization 140
11.1 Constrained Optimization Example 140
11.2 Solver Data Type . 143

11.2.1 Solver Algorithms . 143

CONTENTS COPHASAL

11.2.2 Settings . 143
11.3 Cost Functions, Builtin . 144

12 Tolerancing 145
12.1 Monte Carlo Simulations . 145

A Error Codes 150
A.1 Ray Trace Errors . 150
A.2 Index Calculation Errors . 151

B Software Libraries Used 152

Index 153

Release Note

Welcome to the introductory version of the COPHASAL optical design soft-
ware. COPHASAL is a high performance polarization ray tracing core that
is wrapped in a command line interface based on the Lua programming lan-
guage[8] and which is further enhanced by other functionality to support
optical design.

In its currant avatar, there is only the command line interface. A graphi-
cal user interface is planned down the road. And although the inbuilt analysis
functions are limited, they are sufficient for designing many optical systems.
Further more, the scripting interface enables the user to extend the function-
ality. Some examples are located in the examples sub folder. Lua scripts
are readily recognized by various code editors for syntax highlighting and AI
coding assistants can greatly enhance the experience.

For this version:

• Display of the optical system and plots is done in the browser.

• Command line and scripts based interface.

Many development tasks related to user interface, analysis functions, etc.
are in the pipeline. Often used functions will be incorporated in the high
performance core with many implemented in user space scripts. However,
the development going forward will be progressively dictated more and more
by your requirements. Please write to us and let us know your suggestions,
requirements, and any issues that you encounter. You can always reach us
at cophasal support@xloptix.com.

All changes since version 0.0.0 are listed on the next pages.

7

Release Note COPHASAL

Additions

1. CONIC, conic surface

2. QCON, QCON polynomial based surface

3. TORIC, toroidal surface

4. change_surf(), this function changes the surface type, maintaining
common parameter states

5. check_globals(), function to (un)set strict global variables checking

6. Elegant CLI, compact command line interface has been introduced

7. FOCAL_MODE, new parameter in system settings to support focal modes
like "AFOCAL"

Release Note COPHASAL

Updates

1. Undo/Redo, stop surface was shifting upon Undo/Redo actions

2. os.exit(), now exits gracefully

3. first_order(), large gamma rotation between start and stop surface
results in systematic error in ABCD matrix estimation

4. REPOS, reverse repositioning mode now places the surface and then ap-
plies the repositioning

5. freeze(), supports freezing whole system

6. del_tol(), supports deleting all tolerances

7. profile_data(), updated to include derivative information

8. showlens(), 3D display supports non-rotational surfaces, input table
keys are checked

9. Updated how reference rays are launched to allow curved object surface
("S 1")

Chapter 1

Introduction

COPHASAL is a ray tracing based optical modeling and analysis software
that can also help with design and optimization.

Unless otherwise noted, a boldfaced lower case character represents a
vector (v) while a boldface upper case character represents a matrix (M), and
an individual element will be represented by the corresponding non-boldface
character with element index in the subscript and within parenthesis. For
matrices, the first index is the row number (M(r,c)). A complex quantity will
be represented by tilde on top (c̃).

1.1 Conventions

The conventions used by COPHASAL are based on the book Principles of
Optics[1]. To summarize, the evolution of the electric field of harmonic plane
wave is described by the following relationship

ẽ(r, t) = e0 × ei(k̃.r−ωt−φ) (1.1)

The complex index of refraction is ñ = n + iκ, where κ > 0 for absorbing
medium.

1.1.1 Polarization

Consider a ray traveling along the z direction, ẽ(z) = 0. If ẽ(y)/ẽ(x) = −i then
we have a right circular polarization.

10

CHAPTER 1. INTRODUCTION COPHASAL

I R

T

Figure 1.1: Ray is incident on an interface with a thin film stack containing
a single layer. The incident ray end at the point marked by I, reflected ray
starts from R and transmitted ray starts from T.

1.1.2 Thin Film

When tracing rays across thin film stacks, COPHASAL breaks the ray path.
This is described in the following figure. The geometric phase of the rays is
based on the points I, R and T.

The thin film phase as calculated by the characteristic equation of the
film stack is added as follows. The phase term common to the s and p
polarization is removed and accounted for by augmenting the geometrical
phase term in the ray. The remaining phase term is used to create the Jones
matrix in the s-p coordinate system and applied to the electric field.

1.2 Units

Units of various quantities in COPHASAL is listed in table 1.1

CHAPTER 1. INTRODUCTION COPHASAL

Quantity Units
Dimensions Millimeter

Construction angles Degree
Wavelength Micrometer

Layer thickness Nanometer
Temperature Centigrade

Pressure Atmosphere
Relative Humidity %

Table 1.1: Units for various quantities.

1.3 System Requirements

The core of COPHASAL can be adapted to a particular architecture if
needed. However, it has been tested on the following 64 bit architectures.

OS Processor

Windows 11 Intel processor (x86)
OSX 13 or later Apple Si (ARM)

Apart from this, please note that the default web browser must be set to
a browser based on the Chromium project, like Chrome. This is because
COPHASAL generates web pages on the fly and attempts to open them in
the browser. This is needed for display of 3D graphics and plots.

1.4 Installation

Download and run the installation file COPHASAL ######.exe to install
COPHASAL. The version string is included in the installer file name. The in-
stallation folder can also be added to the system paths environment variable
so that the executable cophasal.exe can be opened in a terminal application,
from any folder.

1.4.1 License

The license file is called license and it is placed in the folder with the
COPHASAL executable. The licensing scheme is simple, there are two li-
censes. The default license is for non-commercial use, for example by stu-

CHAPTER 1. INTRODUCTION COPHASAL

dents. For commercial use, please obtain the commercial license from XLOP-
TIX LLC.

The two licenses differ only in the welcome banner that is displayed at
the start of the application. The banner identifies the type of license in use.
Its just a reminder that in case of commercial use, the appropriate license
must be maintained.1

1.5 User Interface

Command line interface of COPHASAL is essentially based on the Lua script-
ing language that has been augmented with additional functionality2. The
prompt for the command line interface is CPH>. The default file extension is
.lua and this makes these scripts ready for syntax highlighting by many code
editors and also take advantage of available AI coding assistants. Unless
otherwise noted, it will be assumed that the file extension is .lua.

1.6 User Setup

Within the application folder is provided a script called "user_setup". This
script is run every time the COPHASAL starts. It is strongly recommended
that at the minimum this file be edited to include a command to change the
application working folder to a folder in the user’s home folder. An example
of this file is shown in listing 1.1.

print "This is user setup file. "

print ""

-- Load the glass catalogs

add_glass_catalog"schott"

-- Listing precisions

set_numeric_precision(4)

-- cd, add_path, etc.

-- Change working folder.

1Installation and licensing mechanism is subject to change.
2Currently it is the only interface to COPHASAL. A graphical user interface will be

added in subsequent releases.

CHAPTER 1. INTRODUCTION COPHASAL

cd "C:/Users/Your_Name/Documents/Project_Folder"

Listing 1.1: Reference listing of the user setup script.

Notice the last line in the listing, there is a function called cd("<path>")

which takes a single string argument. In Lua, when a function takes a single
string argument, the parenthesis are optional.

1.7 Support

COPHASAL is a fairly complex piece of code and even though it has gone
through extensive testing, bugs are expected. Additionally, there are various
features that are lined up to be added and additional improvement requests
are generated on the go. If you encounter a situation that requires our
attention, please contact us at cophasal support@xloptix.com. Our engineers
will reply back with a path forward or if needed, a live screen share session
can be arranged.

Chapter 2

Quick Start Example

This example illustrates the basic process of realizing a simple optical system
in COPHASAL. In this example, a singlet imaging lens will be designed. The
commands that will be used in this example can be individually supplied to
COPHASAL or assembled in a script file. The latter approach is the preferred
method. We will use both methods in the following. Create a script file called
”example”.

2.1 Blank Lens

When COPHASAL starts it has a ”blank lens” in the system. It is the
starting point and in this state there are only three surfaces defined in the
sequential surfaces list. The same state can be reached by issuing the com-
mand blank(). The optical system layout is shown in 2.1. There are three
sequential surfaces. Sequential surfaces are identified by the letter S. S 1 is
object, 1 mm from it and towards positive ẑ direction is S 2 which is also the
system stop. One more mm from the stop is the image surface.

Every surface has a surface local coordinate system and by default its
ẑ axis points towards right with the ŷ axis pointing up. For the sequential
surfaces, surface thickness usually positions the next surface along the local
ẑ axis at a displacement equal to the thickness, unless the next surface is
repositioned or its coordinate system globally refers to another surface.

In the layout graphics, the x̂ and ŷ axis of every surface coordinate system
is marked by a small red and green line that meets at the origin of that
coordinate system. In figure 2.1, the first vertical green line is object ŷ (x̂

15

CHAPTER 2. QUICK START EXAMPLE COPHASAL

Figure 2.1: Optical system after blank(). Use the command showlens() to
display the layout.

CHAPTER 2. QUICK START EXAMPLE COPHASAL

is pointing into the screen). The white vertical line for S 2 and image is
indicating the Y-Z cross-section of the surface and the active aperture on
that surface.

After blank(), field is in terms of object height and there is only one on
axis field defined. The pupil is specified as entrance pupil diameter (EPD)
of 1 mm. The red rays in figure 2.1 are the chief (parallel to ẑ) and marginal
rays for this on axis field. Similarly, blank() results in only one wavelength
defined for the system and it is set to be equal to 0.5 microns.

2.2 Singlet Start

So the first entry in our example script is going to be blank() just so that we
have a known starting point. Here are the contents of the script to realize a
starting singlet lens.

blank()

-- Wavelengths.

set("wl w 1", 0.6) -- Set the wavelength.

-- w[1].wl = 0.6; does the same thing as above.

ins_wl(2, 0.5) -- Insert wavelength number 2

ins_wl(3, 0.4)

set_pwl(2) -- Designate primary wavelength

-- System.

set("p_val", 10) -- Pupil type is already EPD

-- Set its value to 10 mm

-- Feilds.

ins_fld(2) -- Field type is angle

set("y f 2", 7) -- 7 degrees

ins_fld(3) -- Now we have three fields

set("y f 3", 15)

-- Surfaces.

set("thi s 1", 1e11) -- Object is far away

set_label("s 1", "o")

ins_surf("s 2")

CHAPTER 2. QUICK START EXAMPLE COPHASAL

-- Label the surface, lens first surface

set_label("s 2", "l1")

-- Set radius of curvature, notice the use of label

set("rdy s ’l1’", 50) -- same as: s[’l1’].rdy = 50

set("thi s ’l1’", 5)

set("gls2 s ’l1’", "n-bk7|schott")

-- Note how catalog glass is applied. "|" is used to

-- separate the glass name and the catalog name. Every

-- surface defines a boundary between two mediums,

-- GLS1 and GLS2. For sequential surfaces GLS1 is

-- automaticlly set. One only needs to set GLS2 and

-- think of it as the glass following the surface.

-- Default glass material is the medium set, which is

-- "AIR" by default.

ins_surf("s 3")

set_label("s 3", "l2")

set("rdy s ’l2’", 200)

set("thi s ’l2’", 15)

set_label("s 4", "s") -- Stop surface

set("thi s ’s’", 100)

set_label("s 5", "i")

Listing 2.1: Example script to realize a singlet lens.

To run this script, issue the command runfile("example"). Use showlens()

to display the lens layout in the browser. The layout is shown in 2.2. Surface
details can be listed by using the command list("S 2"). However to list the
important information of all the defined surfaces, omit the surface identifier,
list"s".

S:

Z1: LBL TYP RDY THI MED RFR AUT_APE...

S 1 o SPHERE 0 1e+11 AIR TRANSMIT 0

S 2 l1 SPHERE 50 5 N-BK7|SCH TRANSMIT 10.64

S 3 l2 SPHERE 200 15 AIR TRANSMIT 9.615

S 4 s SPHERE 0 100 AIR TRANSMIT 4.248

S 5 i SPHERE 0 0 AIR TRANSMIT 32.65

Stop: 4

Listing 2.2: Listing of all the sequential surfaces so far.

Let us look at how the various parameters of the system are addressed

CHAPTER 2. QUICK START EXAMPLE COPHASAL

Figure 2.2: Layout of the singlet lens at the starting.

in the listing 2.1. Every parameter has a name and is associated with a
numbered item in a list. For example "thi s 2" is the thickness parameter
of the second sequential surface. In fact, the same scheme if also applicable
for thin film stacks. The only difference is that the film name is also part of
the parameter identification, for example "THI MgF2 L 1".

2.3 Singlet Start Performance

The spot_data() function is used to estimate the root mean square spot
size for the system. The plotting function is plot() and it can be used for
generating the spot pattern.

-- Analysis, get spot data

local data = spot_data() -- Default is F 1, W = PWL

plot(data.spots, {type = "scatter",

labels = {"PWL, F 1"}

}

)

-- Note the {} above, in Lua this is a table

-- containing key-value pairs etc. More on this later.

CHAPTER 2. QUICK START EXAMPLE COPHASAL

print("RMS spot size: ", data.rms)

Listing 2.3: Listing of all the sequential surfaces so far.

Listing 2.3 shows how these functions are used to generate the spot pattern
and print the rms spot size. Note the use of the Lua keyword local, this
declares the variable to be local. Without this qualification, the default
in Lua is to declare variables in the global scope. Please make it a habit
to use local to declare variables otherwise the global name space will get
unnecessarily crowded. The generated spot diagram is shown in figure 2.3

Figure 2.3: On axis spot diagram of starting system.

and RMS spot size: 0.19195509414023 is printed on the screen.

2.4 Optimization

-- Define variables.

vary("cuy s ’l1’")

vary("cuy s ’l2’")

vary("thi s ’l2’")

vary("thi s ’s’")

vary("cuy s ’i’")

CHAPTER 2. QUICK START EXAMPLE COPHASAL

-- Internally, its only curvatures. RDY is only for

-- convenience for set and get functions.

-- Our optimizers are called Solvers and they can be

-- declared as local or global.

local o = Solver.new()

o:set_cost(get_cost)

-- get_cost() is the inbuilt cost function

o:set_rel_tol(1e-2) -- Set relative tolerance

o:solve() -- Optimize

Listing 2.4: Define variables and solver.

For optimization, we must have some parameters of the system designated
as variables. This is done by the function vary(). The optimizer is actually
a user type called Solver and it must be first declared, setup, and then its
solve() function is called for optimization. In listing 2.4, notice how the
local solver’s internal functions are called using the ”:” operator.

2.5 Final Performance

After optimization, the RMS spot size printed by the script is as follows:
Final RMS spot size: 0.0089595633177525. For the optimized system,
layout is shown in figure 2.4, spot diagram is in figure 2.5, and the surface
listing is in 2.5

S:

Z1: LBL TYP RDY THI MED RFR AUT_APE...

S 1 o SPHERE 0 1e+11 AIR TRANSMIT 0

S 2 l1 SPHERE 49.36 v 5 N-BK7|SCH TRANSMIT 11.03

S 3 l2 SPHERE 216.5 v 15.94 v AIR TRANSMIT 10.01

S 4 s SPHERE 0 100.6 v AIR TRANSMIT 4.183

S 5 i SPHERE -60.34 v 0 AIR TRANSMIT 30.61

Stop: 4

Listing 2.5: Listing of sequential surfaces post optimization.

2.6 List Ray

Concise information about a ray can be listed using the function list_ray.
By default it lists the first field chief ray for the primary wavelength ({r

CHAPTER 2. QUICK START EXAMPLE COPHASAL

Figure 2.4: System layout after optimization.

Figure 2.5: On axis spot diagram of optimized system.

CHAPTER 2. QUICK START EXAMPLE COPHASAL

= "ch", f = 1}). To list the +Y marginal ray information instead, call
the function with the following argument list_ray({r = "yp"}). Listings
2.6 and 2.7 show the ray information for the chief and the marginal ray
respectively.

SUR X Y Z L M GPH T,R A

S 2 0 0 0 0 0 0 0.9572 -

S 3 0 0 0 0 0 7.609 0.9572 0.9976

S 4 0 0 0 0 0 23.55 1 1

S 5 0 0 0 0 0 124.2 - 1

Intensity transfer: 0.9141

Jones vector: Yamp/Xamp: 0, Yphi-Xphi: 0

Listing 2.6: Ray listing for F 1 chief ray, PWL.

SUR X Y Z L M GPH T,R A

S 2 0 5 0.2539 0 0 0.254 0.9567 -

S 3 0 4.833 0.05394 0 -0.03483 7.563 0.9572 0.9977

S 4 0 4.175 0 0 -0.04136 23.46 1 1

S 5 0 0.01009 -8.437e-07 0 -0.04136 124.2 - 1

Intensity transfer: 0.9136

Jones vector: Yamp/Xamp: 0, Yphi-Xphi: 0

Listing 2.7: Ray listing for F 1 marginal ray, PWL.

2.7 Paraxial Image Location

In order to locate the image surface at the ideal location based on Gaus-
sian optics, we have to make the thickness of the prior surface ”react” to
changes in the ideal image distance calculations. This is done by the func-
tion pim_reaction(true). This will freeze the thickness and surface listing
will show a ”r” instead of a ”v” next to this thickness.

Chapter 3

Lua Primer

The command line interface of COPHASAL is based on the Lua scripting
language[8]. Lua is relatively simple yet versatile programming language and
the detailed treatment of which is beyond the scope of this document. Only
the basics of Lua relevant to this subject mater will be listed here. Please see
the Lua reference manual (https://www.lua.org/manual/) if more details
are needed. An excellent resource for Lua is the book ”Programming in
Lua”[5] written by one of the authors of the language itself. COPHASAL
uses Lua version 5.4.61.

We can issue individual commands at the COPHASAL prompt or we can
run a script file containing commands. In Lua parlance, these pieces of code,
weather individual commands or the script file, are called ”chunks”. Let us
supply COPHASAL with a simple chunk of code in a file called test.lua,
with the contents listed in 3.1.

-- A double dash starts a comment

--[[A double square bracket starts a multi-line comment

is not required here.]]

local a = "a" -- Lua is case sensitive

-- a is local to the chunk, that is this script

1To facilitate Optics analysis and user experience, COPHASAL has introduced many
additional functions. Apart from these, only a few changes have been introduced to base
Lua and these are as follows. The user’s global environment has been separated from Lua
global environment. Lua function dofile() has been removed. Lua function loadfile
() has been masked off and replaced by runfile() instead, it loads and runs the script.

24

https://www.lua.org/manual/

CHAPTER 3. LUA PRIMER COPHASAL

B = "B" -- Global, list_gvr() to display all global items.

for i = 0, 2 do

-- Lua is lexically scoped

-- a is accessible here

local A = "A"

-- A is local only to the loop

print(i .. " " .. A .. " " .. a)

end

Listing 3.1: Example script.

With this test.lua file saved in the working folder, issue the command
runfile "test", the following should be the result.

-- Result of runfile"test":

0 A a

1 A a

2 A a

-- While the command list_gvr() results in:

B "B"

3.1 Global and Local Scope

An odd and important thing to note about Lua is that without limiting the
scope of a variable to local, it is by default declared in global scope. Global
variables are very useful and they can be used to pass information between
two script runs. However, the global namespace should not be so populated
that we run out of names. Hence, it is a good practice to always use local

unless there is explicit need to declare the variable in the global scope.

3.2 Nil

In Lua, value of nil means nothing. When we assign nil to a variable, it
will be marked for deletion and the Lua garbage collector will remove it from
the variables list. In case some items are declared in the global scope that
were supposed to be in local scope, then this approach can be used to delete
them (example: B = nil).

CHAPTER 3. LUA PRIMER COPHASAL

3.3 Lexical Scoping

As can be seen from the listing 3.1, Lua follows lexical scoping. It means
that for example in the case of nested function, the inner function will have
full access to local variables of the enclosing function.

3.4 Types and Values

Lua is a dynamically types language. Variables can be assigned any value on
the fly. There are eight basic types of variables in Lua. The function type

Value type(Value)

true boolean
3.141 number

”Hello” string
list_gvr function

{} table
Solver userdata

Table 3.1: 6 important Lua types and values

returns the string representing the variable type. The important types are
listed in table 3.1. userdata will not be discussed in detail except for the fact
that the Solver, the internal optimizer, is a userdata. Lua tables are very
versatile and they are a heterogeneous collection of data, more later.

3.5 Basic Operations

The basic library functions are listed in table 3.2. They provide core func-
tionality of Lua. Yet, many of them are encountered infrequently.

3.6 Logical Operations

There are three logical operators, and, or, and not. Note that both the value
false and nil are treated as false, any thing else is treated as true. Hence
the following results hold.

CHAPTER 3. LUA PRIMER COPHASAL

assert collectgarbage error
getmetatable ipairs load

next pairs pcall
print rawequal rawget

rawlen rawset require
select setmetatable tonumber

tostring type warn
xpcall

Table 3.2: Basic library functions.

nil or "a" --> "a"

nil and 10 --> nil

-- Very useful Lua idom:

x = x or v -- If x has a value, use it, else use v.

Both and and or use short-circuit evaluation that is the second operand
will be evaluated only as necessary.

(condition1 and condition2)

-- If condition1 == false, condition2 not checked.

3.7 Arithmetic Operations

Operator Name
+ addition
− subtraction
∗ multiplication
/ division

// floor division
% modulo (reminder)
ˆ exponentiation

Table 3.3: Arithmetic operators.

Table 3.3 lists the mathematical operators in Lua. Common mathemat-
ical functions are in the math library 3.4. It feels odd that math. has to be

CHAPTER 3. LUA PRIMER COPHASAL

attached to these functions names and although it is possible to not have to
do this, it has been decided to keep Lua as original as possible.

math.abs math.acos math.asin
math.atan math.ceil math.cos
math.deg math.exp math.floor

math.fmod math.huge math.log
math.max math.maxinteger math.min

math.mininteger math.modf math.pi
math.rad math.random math.randomseed
math.sin math.sqrt math.tan

math.tointeger math.type math.ult

Table 3.4: Math library functions.

3.8 Relational Operations

Operator Name
> greater than

>= greater than or equal
< less than

<= less than or equal
== equals
∼= not equals

Table 3.5: Relational operators.

Table 3.5 lists the relational operators in Lua.

3.9 Bitwise Operations

Table 3.6 lists the bitwise operators in Lua. These operators convert their
operands to integers and operate on all bits. Shift operators fill vacant bits
with zeros.

CHAPTER 3. LUA PRIMER COPHASAL

Operator Name
& AND
| OR
∼ exclusive OR

>> right shift
<< left shift

Table 3.6: Bitwise operators.

3.10 Strings

string.byte string.char string.dump
string.find string.format string.gmatch
string.gsub string.len string.lower

string.match string.pack string.packsize
string.rep string.reverse string.sub

string.unpack string.upper

Table 3.7: String library functions.

Table 3.7 lists the functions from the string library. A string can be en-
closed in double or single quotes. Quotes inside a string need not be escaped.
However, for string inside another string, we will follow the convention that
the primary string will be enclosed inside double quotes and the internal
string in single quotes (example: local str = "thi s ’stop’").

Just like multi line comments, matching double square brackets define a
multi line string.

local code = [[

local var = "hello world!"

print(var)

]]

-- String variable "code" has two lines of string.

3.11 Tables

In Lua, tables are a versatile construct to realize a collection of data. Table
data is always enclosed in braces. Here are some examples.

CHAPTER 3. LUA PRIMER COPHASAL

-- Declare a local table .

-- Table entries are key value pairs .

local tbl = {

a = 1.0, -- key = a , value = 1.0

b = {" x " , " y " , 3}, -- sequence

c = {12 , 13 , 14} , -- array

d = {} -- empty table

}

tbl.d[1] = "s 1"

tbl.d[#tbl.d + 1] = "s 2" -- tbl.d[2] = "s 2"

-- # is the table length operator.

print(tbl.a) -- 1.0

print(tbl.b[2]) -- y

print(tbl.d[1]) -- s 1

list_tbl(tbl) -- list the table

We cannot just use the print function to list a table. Instead a function to
list tables is provided, it is list_tbl(). Here is the table listing of the above
defined table.

{

d = {"s 1", "s 2"},

c = {12, 13, 14},

b = {" x ", " y ", 3},

a = 1

}

Notice that the ordering of elements of tbl is not as expected but the ordering
of elements of its sub tables is as expected. This is because we do not have
control over how tables store data in the memory. However, if the keys are
sequentially index from integers, as is the default case, then traversing them
sequentially is trivial.

Tables with sequentially indexed integer keys are called lists. Starting
index of 1 for lists is recommended. We say that there is a hole in a list if
there is a nil value in the list that is not at the end. Lists without holes are
called sequences and sequences with all values of the same type are called
arrays.

Please note the difference between two kinds of table indexing. Consider

CHAPTER 3. LUA PRIMER COPHASAL

tbl.a and tbl[a]. The first one gets you 1.0 while the second one will try to
index the table tbl at the value of the variable a which in the above example
has not been declared.

Here are a few ways to traverse a table using for loop constructs.

local t = {1, list_tbl, x = 2, y = "A"}

for k, v in pairs(t) do

print(k, v)

end

--> 1 1

--> 2 function: 0000017b573a24f0

--> x 2

--> y A

-- Pairs function help traverse using key-value pairs.

-- k and v are loop local by default.

t = {1, list_tbl, 2, "A"} -- list

for k, v in ipairs(t) do

print(k, v)

end

--> 1 1

--> 2 function: 0000017b573a24f0

--> 3 2

--> 4 A

-- More traditional for loop

-- Key goes from 1 to the length of table

for k = 1, #t do

print(k, t[k])

end

-- Same output as above.

table.concat table.insert table.move
table.pack table.remove table.sort

table.unpack

Table 3.8: Table library functions.

Table 3.8 lists the functions in the table library.

CHAPTER 3. LUA PRIMER COPHASAL

3.12 Functions

Functions must be defined before they can be used in the script. Here is a
simple example of a script defining and using a function.

local function mysquare(x)

return x * x + math.pi

end

local val = 10

print(mysquare(val)) --> 103.14159265359

-- Functions can return multiple values.

local n, k = indexo("s 1", 1) -- index of refraction

print(n, k) --> 1.0002722354781 0.0

Functions in Lua can be assigned new names on the fly and in fact they
don’t necessarily have to have any name. Lua also supports higher order
functions, that is functions that take other functions as arguments and this
is a very versatile feature. Consider the following example[5].

local function foo(x)

return x + 1

end

-- Is equivalent to:

local foo2 = function(x)

return x + 1

end

-- Table sort example

local tbl = {

{name = "John", age = 23},

{name = "Alice", age = 25},

{name = "Bob", age = 22}

}

-- Higher order functions example

-- Sort by age

table.sort(tbl, function(a, b) return a.age < b.age end)

-- Print sorted table

CHAPTER 3. LUA PRIMER COPHASAL

for i, v in ipairs(tbl) do

print(v.name, v.age)

end

--> Bob 22

--> John 23

--> Alice 25

local function compare_with(x)

local temp = x

return function(y)

return temp == y

end

end

local compare_with_5 = compare_with(5)

print(compare_with_5(5)) -- true

print(compare_with_5(6)) -- false

For simple data types (number, string, boolean), arguments are passed by
value. This means that a copy of the value is passed to the function. Any
changes made to the argument inside the function do not affect the original
value outside the function.

Tables and full userdata (like the Solver) in Lua are always passed and
assigned by reference. This means that when you pass these types as an
argument, you’re passing a reference to the original data, not a copy. Any
changes made to the data inside the function will be reflected in the original
data outside the function.

3.13 Control Structures

Lua offers the most common collection of control structures. We will only
describe if then else conditional branching, for loops, break and return

statements.
The following example illustrates the conditional branching in a function.

-- Function to test the sign.

local function signof(x)

if x < 0 then

return -1

CHAPTER 3. LUA PRIMER COPHASAL

elseif x > 0 then

return 1

else

return 0

end

end

We have already looked at for loops. There are two kinds of for loops,
numerical and iterator based. When we use the functions pairs and ipairs

we are using the iterator based for loop. Examples of iterator based for loop
are shown in section 3.11. Here is an examples of numerical for loop.

-- Numeric for loop syntax:

--[[

for i = start, stop, step do

-- code

end

step is optional and defaults to 1

]]

for i = 1, 5, 2 do

print(i)

end

-- Prints:

-- 1

-- 3

-- 5

The break statement is used to break out of a loop. We have seen the
return statement, there is a subtlety regarding multiple returns. return can
only appear as the last statement of a block. A block being a loop, for
example. This is described in the following example.

-- Multiple return statement

local function foo(val)

-- return here will be a syntax error

if val > 0 then

return "positive" -- OK

elseif val == 0 then

return "zero" -- OK

else

CHAPTER 3. LUA PRIMER COPHASAL

return "negative" -- OK

end

end

3.14 Understanding Error Messages

When COPHASAL encounters an error condition (arithmetic fault, incon-
sistent inputs, etc), it aborts the execution and prints a message indicating
that a fault was detected. Consider the following listing of the contents of
the file test.lua.

1 local args = {

2 sym = "none",

3 rays = {

4 f = "all",

5 w = "pwk"

6 }

7 }

8
9 showlens(args)

Upon running this file, we get the following output.

CPH> runfile"test"

runtime error: PWK: Unqualified item!

stack traceback:

Path_To/scripts/display_helpers.lua:326: in function ’

showlens’

Path_To/test.lua:9: in main chunk

(...tail calls...)

[string "runfile"test""]:1: in main chunk

The main error message is the first line that indicates that this is a runtime
error. This is followed by a stack traceback listing. A stack traceback is
sequential list of function calls that eventually led to this error. The first
line is the final function call, that is the one encountering the error. The
last line is the function that started it all, our command to run the test.lua
file. According to this message, line 9 in test.lua is at fault. This is usually
enough to pin point the issue, however in this case the actual mistake is on
line 5, that is in the value of args.rays.w, it should have been "pwl".

CHAPTER 3. LUA PRIMER COPHASAL

In conclusion, you’ve now successfully navigated the foundational con-
cepts of Lua. With these building blocks, you’re well-equipped to explore
more advanced topics and begin crafting your own Lua scripts. The journey
of mastering Lua is just beginning, and the possibilities are vast.

Chapter 4

Command Line Interface

The command line interface of COPHASAL is capable of customization.
Some of the interface functions are written in Lua itself, like list_grv() and
editfile() are defined in setup script located in the scripts folder1. Although
Lua is case sensitive, we will adhere to the convention of using lower case
keys for table entries. Following is a categorized list of all the additional
functions defined in COPHASAL.

4.1 Parametric Actions

Parameters in COPHASAL have a name (like thi) and are usually associated
with an item in a list. These items can be for example a surface in the
sequential surfaces list. Item numbering starts with 1. These items and their
string identifiers are listed in table 4.1. An example of a parameter name is
"cuy s 4" (curvature of sequential surface number 4). Another example is
"rdy n ’edge’" (radius of curvature of non-sequential surface that has been
labeled as ’edge’, no need to keep track of surface numbers). Here is an
example for film stack glass parameter, "GLS2 AR_COAT L 1", it is the glass
name for layer one of a coating called ”AR COAT”. Except for the label and
coating names, these identifier strings and string parameter values are not
case sensitive.

Some system level parameters are not associated with any item. These

1Global variables in Lua are defined in a table called _G. However, a simple ”sandbox”
has been implemented to hide this table from the user. Your global variables are actually
in a table called User_Globals.

37

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Item String Identifier
Wavelengths W

Fields F
Sequential Surfaces S

Non-Sequential Surfaces N
This Film Layers L

System Data D

Table 4.1: Items and identifier strings.

are most of the System Data parameters like PUPIL, Wavelength parameters
like TEM (temperature). Their identifier string is simply the parameter name.

Parameters in COPHASAL can be classified into three capabilities. These
are the capability to zoom, react, and vary.

4.1.1 Zoomers

Many optical systems must be designed to simultaneously maintain specifi-
cation under different arrangement of individual constituent components or
parameter values. The most common example of such a system is the tra-
ditional Zoom lens that must maintain good imaging quality at all specified
zoom positions. These zoom positions are realized by a specific arrange-
ment or configuration of the component lenses making up the zoom lens.
Such systems can be realized in COPHASAL by setting a different value for
the constructional parameters of the system, for the different zoom positions.
Zoomers are the parameters that support this capability. To zoom something
is to have it represent potentially different values for different configurations
(zoom positions). This is indicated by the letter ”z” next to that parameter
listing. The following are the system level functions to support the zoom
capability.

But first, here is code block describing how to read the syntax language.

--[[

ret = func(arg1, [arg2], [arg3])

ret: return value

arg1: first argument

arg2: optional second argument, default: 0

arg3: optional third argument, default: {

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

key1 = num,

key2 = str,

[key3] = 2,

key4 = (option1 | option2)

}

Additional description: For arg3, key1 is required number, key2 is

required string, key3 is optional number with default 2

and key4 is required with value either option1 or option2.

optional arguments are in []

exclusive or is represented by |

--]]

• num_zooms

--[[

Zs = num_zooms()

ret: Zs, number of zoom positions

--]]

Get the number of system zooms.

• set_zooms

--[[

set_zooms(Zs)

Zs: number of zoom positions

--]]

set_zooms(3) -- 3 configuration system.

Sets the number of zoom positions for the system.

Maximum number of zooms: 25.

• ins_zoom

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

ins_zoom(at_pos)

at_pos: Zoom position number at which new zoom position is

inserted.

--]]

ins_zoom(3) -- Insert zoom at position 3.

Inserts a system zoom position at the designated position.

• del_zoom

--[[

del_zoom(pos)

pos: position number to be deleted

--]]

del_zoom(3) -- Delete third zoom psoition.

Delete the system zoom position at the designated position.

• sys_dezoom

--[[

sys_dezoom(to_pos)

to_pos: position number to dezoom to

--]]

sys_dezoom(3) -- Dezoom system to position 3.

-- After this, system is unzoomed.

Deletes all zoom position but the designated one.

• copy_zoom

--[[

copy_zoom(to_pos, from_pos)

to_pos: destination position

from_pos: source position

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Copies parameter values from the source position to the destination position.

• list_zooms

--[[

list_zooms()

lists the zoomed parameters. An example listing is shown:

Zoom/Prm 1 2 3

CUY S 3 : 0.006741 0.010741 0.008741

THI S 2 : 5 4 2

--]]

• display_zoom

--[[

display_zoom(pos)

pos: zoom position number to use as default when listing data and

displaying results. Default: 1

--]]

4.1.2 Reactors

The next kind of parameters are the reactors. As the name suggests, they
react to changes in another ”source” parameters of a similar type. In the
simplest form, they will just follow the source and have the same value as
the source. But they can also support scales and offset with respect to the
source. Parameters that are reacting have a letter ”r” next to their listing.
The functionality of zoomers is a subset of the functionality of reactors.

• list_reacts

--[[

list_reacts()

The listing has two columns, first is destination, other is source.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Example listing:

THI S 4: z 1 <--- z 1 ___pim_dist__ [1, 0]

In the above listing, thi s 4 of the first zoom position is

reacting to the paraxial image distance calculation of the

first zoom with a scale factor of unity and offset of zero.

--]]

4.1.3 Variators

These are reactors with additional properties. As the name suggests, these
are numeric parameters and can be designated as variables for optimization.
Tolerances can also be assigned to them and touch() function will perturb
these parameters based on the tolerance. The functionality of reactors is a
subset of the functionality of variators. When a parameter is a variable, the
letter ”v” is displayed next to its listing. The following are the system level
function associated with variators.

• list_vars

--[[

list_vars()

Example listing:

ID : Zs

CUY S 2 : 1

THI S 3 : 2

curvature of S 2 for zoom 1 is variable. Thickness of S 3 for zoom

2 is also a variable.

--]]

• list_tols

--[[

list_tols()

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Example listing:

ID : Zs

THI S 3 : 0.025

Thickness of S 3 should tolerate an error of 25 microns. Tolerances

are listed for every zoom if the parameter is zoomed.

--]]

• touch

--[[

touch()

Perturb the system parameters that have tolerances defined.

Currently, the perturbation amount is uniformly distributed

between -tol and +tol.

--]]

• scale_tols

--[[

scale_tols(factor)

factor: The scaling multiplicative factor is applied to all

tolerances.

Note, instead of using a scale of 0.0 to deactivate a tolerance,

delete the tolerance directly.

--]]

4.1.4 Parameter Functions

The following is a list of functions that are directly or indirectly associated
with parametric actions. The different parameters associated with a partic-
ular aspect will be discussed in the following chapters.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• del

--[[

del(id)

id: String name of item to delete.

Deletes the item identified by the id.

--]]

del("W 2") -- Deletes wavelength 2.

• num_of

--[[

N = num_of(id)

N: Number of items of type identified by id.

id: String identifying the items, like "S", "W" etc.

--]]

CPH> print("Seq-surfaces count: " .. num_of("s"))

Seq-surfaces count: 3

• set_label

--[[

set_label(id, label)

id: Item identifier.

label: String label for easier addressing.

Labels are case sensitive.

--]]

CPH> set_label("s 2", "Stp") -- Stop label

CPH> set("thi s ’Stp’", 1.234) -- Directly address stop

• get_label

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

label = get_label(id)

label: Returns the string label of the item.

id: Identifying string for the item.

Empty string returned if no label defined.

--]]

• ordinal

--[[

pos = ordinal(label)

pos: Numeric position of the item in the list.

label: Label string of the item.

--]]

CPH> local pos = ordinal("s ’Stp’") -- 2

It returns the numerical position of the labeled item.

• set

--[[

set(id, val, [zm])

id: Parameter id string.

val: Value (number, string, bool, table).

zm: Numeric zoom position to target, default: 1.

--]]

CPH> set("thi s 2", 1.0, 1)

CPH> set("gls2 s 2", "n-bk7|schott")

CPH> set("use_jm s 2", true) -- Use Jones Matrix flag

CPH> set("apdz s 2", {0, 0, 1.0, 1.0}) -- Appodization

Function to set parameter values.

• get

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

val = get(id, [zm])

val: Returns the value (number, string, bool, table).

id: Parameter id string.

zm: Numeric zoom position to target, default: 1.

--]]

CPH> val = get("apdz s 2")

CPH> list_tbl(val)

{0, 0, 1, 1}

Function returns the value of the targeted parameters.

• zoom

--[[

zoom(id)

id: Parameter id string.

Zooms the parameter, allowing it to represent different values for

different zoom positions.

--]]

• dezoom

--[[

dezoom(id, [to_zm])

id: Parameter id string.

to_zm: Dezoom to position number, default: 1.

--]]

• is_zoomed

--[[

bool = is_zoomed(id)

bool: Returns true of parameter is zoomed.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

id: Parameter id string.

--]]

• set_reaction

--[[

set_reaction(r, s, [scale], [offset], [r_zm], [s_zm])

r: Reacting parameter id string.

s: Source parameter id string.

scale: Default: 1.0.

offset: Default: 0.0.

r_zm: Zoom number of reacting parameter value, default: 1.

s_zm: Zoom number of the source value.

However, scale and offset are interpreted according to the reacting

parameter type. The reaction is as follows:

numeric types : r_value = s_value * scale + offset

booleans types : r_value = s_value, if scale >= 1.0

: r_value = !s_value, if scale < 1.0

: examples are ignr, use_jm, etc.

other types : r_value = s_value

: examples are gls2, flm, etc.

--]]

CPH> set_reaction("thi s 2", "thi s 1", 1.0, 0.0, 1, 1)

Sets up reaction connecting source parameter to reacting parameter which
then reacts to changes in the source. Reactions cannot be setup between dif-
fering types, that is for example between strings (glass) and numbers (thick-
ness). When the parameter type is boolean, the following convention is rec-
ommended, scale = 1.0 => r_value = s_value; scale < 1.0 => r_value

= !s_value.

Maximum chain reaction length: 100.

Cyclic reaction not allowed.

• del_reaction

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

del_reaction(id, [zm])

id: Reacting parameter id string.

zm: Zoom number of the reacting value, default: 1.

Delets the reaction connecting source to reacting parameter.

--]]

• is_reacting

--[[

bool = is_reacting(id, [zm])

bool: Returns true if reacting.

id: Parameter id string.

zm: Zoom number of the value, default: 1.

--]]

• reaction_source

--[[

bool = reaction_source(id)

bool: Returns true if parameter is source of reaction for any zoom.

id: Parameter id string.

--]]

• vary

--[[

vary(id, [zm])

id: Parameter id string.

zm: Zoom number, default: 1.

Designates the parameter value at the specified zoom to be a

variable during optimization. Listings will indicate this by the

letter "v" next to the parameter.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--]]

• freeze

--[[

freeze(id, [zm])

id: Parameter id string.

zm: Zoom number, default: 1.

Freezes the parameter value at the specified zoom, that is it is

no longer a variable during optimization.

Without any argument, the function freeze() freezes the system.

--]]

• is_variable

--[[

bool = is_variable(id, [zm])

bool: Returns true of value is variable.

id: Parameter id string.

zm: Zoom number, default: 1.

--]]

• set_tol

--[[

set_tol(id, val, [zm])

id: Parameter id string.

val: Tolerance value (numeric).

zm: Zoom number, default: 1.

Sets the tolerance on a parameter.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• del_tol

--[[

del_tol(id, [zm])

id: Parameter id string.

zm: Zoom number, default: 1.

Deletes the tolerance on a parameter.

Without any argument, the function del_tol() deletes all

tolerances.

--]]

• get_tol

--[[

val = get_tol(id, [zm])

val: Returns tolerance value.

id: Parameter id string.

zm: Zoom number, default: 1.

--]]

• is_tolerating

--[[

bool = is_tolerating(id, [zm])

bool: Returns true of parameter has tolerance setup.

id: Parameter id string.

zm: Zoom number, default: 1.

--]]

• list

--[[

list(id)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

id: Id string.

Print listing of the numbered item. Or a summary of all items if

position number omitted.

--]]

CPH> list"w 1"

W 1

WL W 1 : 0.5

WT W 1 : 1

CPH> list"w"

1 W entrie(s).

W 1

WL W 1 : 0.5

WT W 1 : 1

PWL 1

TEM : 20

PRE : 1

RH : 0

4.1.5 Alternative Compact Interface

As mentioned earlier, Lua is highly customizable. An alternative interface
is available to manipulate the parameters2. Use of this interface is shown in
the following example script.

-- Setting

s[2].thi = 1.23 -- Set thi on s 2 to 1.23. Zoom 1 is assumed.

z[1].s[2].thi = 1.23 -- same as above.

s[3].thi = s[1].thi + s[2].thi

s[4].repos = "bend" -- Repositioning mode is now "bend"

-- Getting

local rad = z[2].s[3].rdy -- Get zoom 2 rdy on s 3.

2This interface will be further improved upon. Currently only set and get functions
are emulated. A few parameters that are not associated with numbered items cannot be
set in this manner. Thin film parameters are also not addressed by this approach. Labels
cannot be set, but can be used instead of numbers.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

local ignore_flag = s[2].ignr

set_label("s 2", "stp")

local stp_sz = s[’stp’].aut_ape

To realize this interface, the following tables have been placed in the Lua
global environment, s, n, w, f, z. The order of table access in the above
examples is important.

4.2 Utilities

These are function that are used throughout the application.

4.2.1 General Utility Functions

• help

--[[

help()

Launches this reference manual.

--]]

• exit

--[[

exit

exit command exits the application.

--]]

• get_cores

--[[

c = get_cores()

c: Returns the number of CPU cores being utilized.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• set_cores

--[[

set_cores(c)

c: Number of CPU cores to utilized.

c = 0 => auto detect number of logical CPUs.

--]]

Note that setting the cores to a number larger than the supported number of
cores is not helpful additionally this follows the law of diminishing returns.
Default is to auto detect and this is probably acceptable in most cases.

• list_all

--[[

list_all(dsp)

dsp: Boolean flag. False => simplified listing. Full otherwise.

--]]

• set_numeric_precision

--[[

set_numeric_precision(digits)

digits: Number of decimal digits to list.

Set the numerical precission of the text output.

--]]

• tbl2str

--[[

str = tbl2str(tbl, [indent])

str: Returns string representing the table.

tbl: Table to be printed.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

indent: Number representing starting indentation for readability,

default: 0

Lua can have nested tables and also cyclic tables. Please note that

cyclic tables are not supported by this function. For nested

tables, indentation is used for better readability. This

function is not used much by itself.

--]]

• list_tbl

--[[

list_tbl(tbl)

tbl: Table to be listed with proper indentations.

It calls tbl2str and prints the results.

--]]

CPH> tbl = {a = 1, b = {c = 3, d = 4}}

CPH> list_tbl(tbl)

{

a = 1,

b = {

c = 3,

d = 4

}

}

• general_equality_test

--[[

res = general_equality_test(a, b)

res: Returns boolean, true if a == b.

a, b: Values or tables

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• check_globals

--[[

check_globals(v)

v: bool

Sets the check globals flag, like so

check_globals(true)

--]]

With the check globals flag set to true, attempt to access the value of an
undefined variable results in an error. Further more, defining new global
variable in the Lua global environment is also prohibited. However, it is
still possible to declare new global variables in the users global environment.
Default value of this flag is false.

4.2.2 Data Display Functions

• plot

--[[

plot(data, [plot_args])

data: data is a table of subtables.

Each subtable is a data point, that is {x, y1, y2, ...}.

if #subtable = 1, then x = 1, 2, 3,

plot_args = {

[type] = "line", --Type of plot: scatter|line|bar.

[labels] = {"Data_1", "Data_2", ...},

-- Labels for data, size must match data.

[title] = "", -- Title of the plot.

[subtitle] = "", -- Subtitle of the plot.

[xlabel] = "", -- X-axis label.

[ylabel] = "", -- Y-axis label.

[xmin] = auto, -- Minimum x-axis value.

[xmax] = auto, -- Maximum x-axis value.

[ymin] = auto, -- Minimum y-axis value.

[ymax] = auto, -- Maximum y-axis value.

}

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--]]

-- Contents of test.lua:

local data = {

{1, 2, 3},

{2, 2.1, 3.2},

{3, 2.2, 3.4},

{4, 2.3, 3.6},

{5, 2.4, 3.8},

{6, 2.5, 4.0},

{7, 2.6, 4.2},

{8, 2.7, 4.4},

{9, 2.8, 4.6}

}

local plot_args = {

title = "Test Plot",

labels = {"Y1", "Y2"},

xlabel = "X",

ylabel = "Y"

}

plot(data, plot_args)

-- Run test.lua:

CPH> runfile"test"

Result of the above run is shown in figure 4.1. The charts are interactive, the
chart labels can be (un)selected by clicking. This can help de-clutter dense
plots.

• hist_table

--[[

d = hist_table(data, [bins])

d: Returns histogram table of data distributed in bins

data: Table of data.

bins: Number of histogram bins, default: 10.

--]]

-- Contents of test.lua:

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Figure 4.1: Example plot.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

-- Generate a array of 100 numbers

-- randomly distributed between 0 and 10

local array = {}

for i = 1, 100 do

array[i] = math.random() * 10

end

local d = hist_table(array)

plot(d, {type="bar"})

-- Run test.lua

CPH> runfile"test"

Figure 4.2: Example histogram plot.

Result of the above run is shown in figure 4.2.

• showlens

--[[

showlens([args])

args = {

[sym] = "YZ", -- Symmetry to use, YZ|XZ|NONE,

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

-- NONE draws surfaces and YZ, XZ sections.

[overlay] = "S 1", -- Overlay surface id.

-- "S 1" => no overlay, show selected zoom.

-- Overlay frame taken from first zoom.

[rays] = {

[f] = "f <f>"|"all", -- Default is "all" for all fields.

-- This does not apply to user rays.

[w] = "w <w>"|"all"|"pwl"

-- Default is "pwl" for the zoom.

}

}

--]]

-- Contents of test.lua:

local args = {

sym = "none",

rays = {

f = "all",

w = "pwl"

}

}

showlens(args)

-- Run test.lua

CPH> runfile"test"

Result of the above run is shown in figure 4.3. The function showlens(args)

internally calls get_scene(args) to obtain a table of positional information
about the optical system. This table is then passed to the function display

(scene, args), which displays it in the browser.
The display is always 3D even when only the YZ symmetry is selected.

Click + drag results in reorientation, shift + click + drag results in panning,
scroll wheel is for zooming in and out. Right click exposes a menu item to
reset the display.3

3Export is currently limited to STL files. These have limited functionality but are still
useful for checking against packaging requirements in a traditional CAD software.

When using external browser for display, it can be necessary to pause between multiple
display commands in a script to allow display functions to catch up. There is no inbuilt
function to pause in Lua. However we can achieve this by calling the appropriate system
function. For example, on a Windows machine, os.execute("Sleep 1") will pause for
one second.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Figure 4.3: Output from showlens.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• list_gvr

--[[

list_gvr()

Lists the global variables defined.

--]]

CPH> num_val = 3.141

CPH> str_val = "a string"

CPH> function doodle() print("hello") end

CPH> tbl = {1, 2, 3}

CPH> opt = Solver.new()

CPH> list_gvr()

num_val 3.141

str_val "a string"

tbl table

doodle function

opt solver

4.2.3 File System Functions

• cd

--[[

cd(path)

path: String representing path to a folder.

Changes the working folder to the one represented by path.

Example:

cd("C:/Users/MyName/Documents/project")

--]]

• pwd

--[[

pwd()

Prints the current working folder path.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--]]

• ls

--[[

ls()

Lists the sorted contents of the current folder.

Directories are designated by (D).

--]]

• add_path

--[[

add_path(path)

path: String, path to folder to add to paths list.

Files are searched, first in the working folder,

then in the folders in the paths list,

in the order of the list.

--]]

• del_path

--[[

del_path(path)

path: String, path to be removed.

--]]

• list_paths

--[[

list_paths()

Lists the paths in order.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• find_a_path

--[[

pth = find_a_path(file)

pth: Returns string representing full path to file.

file: String, name of file, extension optional.

Returns full path to file.

Checks for existence, returns "" if not found.

Mainly for loading/running files.

--]]

• qualify_filename

--[[

pth = qualify_filename(file)

pth: Returns string representing full path to file.

file: String, file name, extension optional.

Qualify filename with full path and default extension.

Does not check for file existence. Mainly for saving files.

--]]

• runfile

--[[

ret = runfile(file)

ret: Captures anything that the script file returns.

file: String, scipt file to run, extension optional.

Executes the commands in the script file.

A return statement can only occur at the end of a code block, like

a function. The script in the file is a code block and like

functions, a return statement can be placed at the end of the

script.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

The return from runfile is useful too. For example, the script file can define
local functions and return a table of these functions. All the details of the
implementation of these functions is encapsulated in the script.

• savefile

--[[

savefile(file),

file: String name of file to save to.

Saves the optical system to script file. Extension is optional.

Scripts for any films and user defined glasses used by the system

are also generated and saved in the file.

--]]

• editfile

--[[

editfile(file)

file: String name of file to edit.

Opens the file in the default editor for the file.

--]]

4.2.4 Undo

• undo

• redo

• pause_undo

• unpause_undo

• list_undostack

--[[

undo() -- Undo last action.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

redo() -- Redo last action.

pause_undo() -- Pauses the undo feature.

unpause_undo() -- Restart the unfo feature.

list_undostack() -- Lists the undo stack.

-- <--- marks the stack pointer.

--]]

CPH> list_undostack()

Undo Stack Listing:

set("thi s 2", 3.141)

ins_surf("s 2")

set_stop(2) <---

Probably the most used function here is undo(). Furthermore, its main use
case is to undo the actions of an optimization cycle, and the touch function.

Maximum stack depth: 13.

4.2.5 Lens Utilities

• blank

--[[

blank()

Reset the entire model reulting in a blank lens.

--]]

After this function the system sate is as follows. All non-sequential surfaces
are deleted. There are three default sequential surfaces one mm apart from
previous surface. There is a single field with object angle of zero degrees.
Pupil type is EPD with value of 1 mm. There is single wavelength (0.5µm)
and temperature is 20.0 degrees centigrade, pressure is 1.0 atmosphere and
relative humidity is 0%.

Polarization coordinate system is collimated and polarization state is hor-
izontal (Ex = 1;Ey = 0), and the YZ plans is used for reference ray calcula-
tions.

The film store is emptied and user defined glasses are purged from the
glass house. Also, the system has a single zoom position defined. The internal
cost function parameters are also reset to defaults.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• scale_lens

--[[

scale_lens(scale_factor, [input])

scale_factor: The scale factor cannot be zero.

input = {

[system] = true,

[range] = {

"s <start>",

"s <stop>"

}

}

Scales the dimensional parameters of the whole system or selected

surfaces. With system = true, system data like EPD, field heights

are scalled. In the absence of range, all surfaces (sequential

and non-sequential) are scaled. When a valid range is provided,

default value of system is false.

--]]

Please note:

• Field values are scaled only when field type (FTYP) for all zooms is set
to "HEIGHT".

• The thin film thickness taper parameter (TFD) is not scaled.

• Surface apodization parameter (APDZ) is not scaled.

4.3 System Settings

Defining the number of zoom positions for the system is done by function
set_zooms. System focal mode is controlled by the parameter FOCAL_MODE.

4.3.1 Fields

• ins_fld

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

ins_fld(num, [data])

num: Field number.

data = {

[x] = 0.0, -- x value

[y] = 0.0,

[vxp] = 0.0, -- Vignetting factor, +x

[vyp] = 0.0,

[vxm] = 0.0,

[vym] = 0.0

}

Each parameter of the field can be addressed directly as well.

--]]

Maximum number of fields: 25.

4.3.2 Wavelengths

• ins_wl

--[[

ins_wl(num, w)

num: Wavelength number.

w: Wavelength in micro meters.

--]]

Maximum number of wavelengths allowed: 25.

Minimum wavelength allowed: 0.001 microns.

• set_pwl

--[[

set_pwl(wl, [zm])

wl: Wavelength number to use.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

zm: Zoom number, default: 1.

Set primary wavelength for the zoom.

--]]

• get_pwl

--[[

wl = get_pwl([zm])

wl: Returns the PWL number.

zm: Zoom number, default: 1.

--]]

• zoom_pwl

--[[

zoom_pwl()

--]]

• dezoom_pwl

--[[

dezoom_pwl([zm])

zm: Zoom number, default: 1.

--]]

• is_pwl_zoomed

--[[

bool = is_pwl_zoomed()

bool: Returns true of PWL is zoomed.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

4.3.3 Reference Rays

• pim_reaction

--[[

pim_reaction(bool, [zm])

bool: True to set the reaction, false to deactivate.

zm: Zoom number, default: 1.

Sets a reaction on thickness of surface before image to place image

at ideal image location.

--]]

• iterate_all_chiefs

--[[

iterate_all_chiefs(bool)

bool: True to iterate all chief rays.

Iterate all chief rays to go through the stop center.

Otherwise, only iterates F 1 PWL chief rays.

--]]

• iterate_marginals

--[[

iterate_marginals(bool)

bool: True to iterate all marginal rays to stop edge.

Targets marginal rays to edge of first order stop, ignoring

vignetting factors.

--]]

• list_fo

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--[[

list_fo([zm])

zm: Zoom number, default: 1.

Lists the first order properties for zoom.

--]]

CPH> list_fo()

First order properties (ray and surface local) for zoom 1:

FO:

F1 = -1e+13

F2 = 1e+13

m_ENP = 1

m_XP = 1

ENP_POS = 0

PP1 = 0

NP1 = 0

XP_POS = 0

PP2 = 0

NP2 = 0

Ref ENP = 1

ENP POS = 0, 0, 0

ENP DIR = 0, 0, 1

XP POS = 0, 0, 0

XP DIR = 0, 0, 1

• ref_status

--[[

ref_status()

Lists any error messages for reference rays.

--]]

CPH> ref_status() -- All good here.

F1 PWL ray errors:

Remaining rays errors:

Z01:

Diagnostic errors:

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

4.4 Glasses

• add_myglass

--[[

add_myglass(info, data)

info = {

glass = <Glass_Name>,

[density] = 0, -- grams per cubic centimeter

[cost] = 0.0, -- relative cost, relative to SCHOTT N-BK7.

-- >= 0. 0 => cost not available.

[homogeneous] = true,

[type] = "SOLID" -- SOLID|LIQUID|GAS|UNIAXIAL

}

data = {

[cte] = "QUADRATIC",

[cte_data] = {c0, c1, c2, t0},

-- {0, 0, 0, 20.0} (defaults)

-- Empty table is auto interpreted according to CTE.

-- Omega(tem) =

-- (c0*tem + c1*pow((tem-T0), 2)/2

-- + c2*pow((tem-T0), 3)/3);

-- L2 = L1 * exp(Omega(T2) - Omega(T1))

-- 1e-6 common factor assumed.

[alpha] = "ORDINARY", -- ORDINARY|INTERPOLATE,

-- ORDINARY is calculated from index.

[alpha_data] = { {} }, -- Empty table is interpreted according

-- to alpha.

-- = { {ws}, {Ts} } for INTERPOLATE

-- internal transmission data.

-- first w is ignored,

-- first T is slab thickness.

[dndt] = "SCHOTT", -- GAS|SCHOTT

[dndt_data] = {}, -- Empty table is auto interpreted

-- according to dndt type.

-- SCHOTT ->

-- {d0, d1, d2, e0, e1, lambdaTK, ref_tem, mes_tem}

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

-- {0, 0, 0, 0, 0, 0, 20.0, 20.0} (defaults)

-- GAS ->

-- {a, b, c, d, e, f, T_m, lower_wl, upper_wl}

-- {6432.8, 2949810.0, 146.0, 25540.0, 41.0, 0.0034785,

-- 15, 0.17, 20.0} (defaults)

[dispersion] = "INTERPOLATE", -- GAS|INTERPOLATE|SELLMEIER

[dispersion_data] = {} -- Empty table is interpreted as:

-- GAS -> as above.

-- INTERPOLATE -> { {ws}, {ns}, [{ks}] }, no duplicate

-- wavelengths allowed. Data not optional.

-- Absorption => imaginary part of index > 0.

-- SELLMEIER -> {B1, B2, B3, C1, C2, C3,lower_wl,upper_wl},

-- data not optional.

-- Note that these tables are numeric sequences in the

-- above order. Do not use keys.

}

--]]

-- Example script to define a user glass:

local info = {glass = "gsl1"}

local data = {

dispersion = "interpolate",

dispersion_data = {

{0.4, 0.5, 0.6, 0.7}, -- wavelengths

{1.6, 1.51, 1.4, 1.3} -- n

}

}

add_myglass(info, data)

The index of refraction of gas and that of air is based on formula given in
book by F. Kohlrausch[7]. Note that this formula produces similar results
as that of the Cauchy’s formula[1] at the right temperature and pressure.
Schott DNDT is based on a Schott technical article[9].4

For interpolate dispersion, maximum wavelength entries: 100.

Maximum number of user glasses: 100.

4UNIAXIAL and GRIN not yet implemented

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• del_myglass

--[[

del_myglass(name)

name: String, user glass name.

Deletes the user defined glass.

--]]

• list_glass_info

--[[

list_glass_info(name)

name: String, glass name.

Lists the infromation about the glass.

--]]

• get_glass_info

--[[

tbl = get_glass_info(name)

tbl: Returns a table containing glass infomation.

name: String, glass name.

example return = {

name = "Glass_Name",

density = 0,

rcost = 1.0,

hom = true,

state = "SOLID"

}

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• list_myglasses

--[[

list_myglasses()

List all user defined glasses.

--]]

• add_catalog_glass

--[[

bool = add_catalog_glass(info, data, cat_name)

bool: Returns true on success.

info: Glass info table.

data: Glass data table.

cat_name: String, catalog name.

--]]

• add_glass_catalog

--[[

add_glass_catalog(vendor)

vendor: String, name of the glass vendor, like Schott.

Loads the entire catalog into memory. Catalog has to be first

loaded then its glasses can be used in the model.

--]]

Maximum catalog glasses in memory: 1000.

• remove_glass_catalog

--[[

remove_glass_catalog(vendor)

vendor: String, name of the glass vendor, like Schott.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Unloads the entire catalog from the memory.

--]]

• list_loaded_glasses

--[[

list_loaded_glasses()

Lists all the vendor glasses in the memory.

--]]

• air_index

--[[

n = air_index(wl, [zm])

n: Returns the index of refraction of air.

wl: Wavelength number.

zm: Zoom number, default: 1.

--]]

• get_medium

--[[

med = get_medium()

med: Returns string name of the default medium like AIR.

--]]

4.5 Films

• add_film

--[[

add_film(tbl)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

tbl = {

film = <name>,

layers = {

{<glass>, <thickness>}...

}

}

Light usually incident from top, that is the first layer.

The last layer attaches to the substrate.

Thickness is in nano meters.

--]]

-- Example script to add a film stack.

local stack = {

film = "my_film",

layers = {

{"gsl1", 110},

{"gsl2", 120}

}

}

add_film(stack)

Maximum number of layers: 100.

Maximum number of stacks: 20.

• del_film

--[[

del_film(film)

film: String name of the thin film.

--]]

• list_films

--[[

list_films()

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

List all the film stacks defined.

--]]

4.6 Surfaces

4.6.1 Surface Related

• ins_surf

--[[

ins_surf(id, [type|data])

id: String, surface id.

type: String, surface type, default: SPHERE.

data = {

[type] = "SPHERE",

[glass] = <medium>, -- For GLS2.

[rdy] = 0,

[thi] = 0

}

Supported surface types = SPHERE|CONIC|QCON|TORIC|NSIN|NSOUT

NSIN|NSOUT cannot be inserted in the non-sequential surface list.

--]]

Maximum SEQ surfaces: 100.

Maximum NSEQ surfaces: 100.

• change_surf

--[[

change_surf(id, type)

id: String, surface id, like "s 2".

type: String, surface type, like "conic".

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• profile_data

--[[

res = profile_data(surf_id, x, y, [zm])

res: Returns table = {

{sag, sag_x, sag_y},

{sag_xx, sag_yy, sag_xy},

{normalX, normalY, normalZ}

}

On error, empty.

surf_id: String, surface id.

x, y: X and Y coordinate in surface local frame.

zm: Zoom number, default: 1.

Here sag_x is derivative of sag wrt x, sag_xx is the second

derivative etc.

Returns the surface sag, normal at [x, y], and derivatives of sag.

Normal points into GLS1, that is towards -Z.

--]]

• indexo

--[[

n, k = indexo(glass_id, wl, [zm])

n, k: Returns two numbers, n and k.

glass_id: String, like "GLS1 n 2".

wl: Wavelength number.

zm: Zoom number, default: 1.

Get ordinary absolute index of refraction.

For sequential surfaces, just use surface id like "s 1",

GLS1 and GLS2 is ignored.

Returns index of the following medium for the ray.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• omega

--[[

omg = omega(glass_id, zm)

omg: Returns the number omega for the glass.

glass_id: String, e.g. "GLS1 n 2".

zm: Zoom number, not optional.

The thermal expansion is: L2 = L1 * exp(omega_2 - omega_1),

where omega_1 and omega_2 are the omegas of the glass at the two

temperatures. For sequential surfaces, always returns GLS2 omega.

Temperature differential comes by zooming the system temperature.

--]]

4.6.2 Stop Related

• set_stop

--[[

set_stop(surf, [zm])

surf: Sequential surface number.

zm: Zoom number, default: 1.

Designates surf to be the system stop for this zoom.

surf cannot be the firt (object) or the last (image) surface.

--]]

• get_stop

--[[

stp = get_stop([zm])

stp: Returns the sequential surface number that is stop.

zm: Zoom number, default: 1.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• zoom_stop

--[[

zoom_stop()

Zooms the spot pointer.

--]]

• is_stop_zoomed

--[[

bool = is_stop_zoomed()

bool: Returns true if stop pointer zoomed.

--]]

• dezoom_stop

--[[

dezoom_stop([to_zm])

to_zm: Zoom number to collapse to, default: 1.

--]]

4.6.3 Global Referencing

• set_glb_ref

--[[

set_glb_ref(surf_id, ref_id)

surf_id: String, surface id.

ref_id: String, reference surface id.

surf_id is placed with respect to ref_id.

Within the list, only backward references are allowed.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

And sequential surfaces cannot refer to non-sequential surfaces.

--]]

• del_glb_ref

--[[

del_glb_ref(surf_id)

surf_id: String, surface id.

Delete a global positional reference.

--]]

• list_glb_refs

--[[

list_glb_refs()

Lists a table showing the global references linkage.

--]]

• list_glb_position

--[[

list_glb_position(surf_id, [zm])

surf_id: String, surface id.

zm: Zoom number, default: 1.

Prints the global position of a surface.

--]]

4.7 Rays

It is assumed that all rays start in isotropic and homogeneous medium. Node
power = E2, and index of refraction automatically accounted for. Reference
rays and sequential analysis rays have unit starting power. Maximum number

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

of user defined rays per wavelength and zoom is limited to 169. If object is
too far, reference rays and sequential analysis rays will start on ”S 2”. If
the ratio of entrance pupil radius to the object distance is less than about
2× 10−5, object is then assumed to be too far.

4.7.1 User Rays

• add_ray

--[[

add_ray(node_tbl)

node_tbl: Table containing ray starting information.

node_tbl = {

pos = {x, y},

[dir] = {0, 0}, -- Tanx and Tany.

[jv] = { {1, 0},

{0, 0} },

-- Ex’, Ey’

[sur] = "S 1",

[seq] = true,

[w] = <PWL>, -- Wavelength number.

[z] = 1

}

For non-sequential user rays, please ensure that they do not miss

the starting surface.

--]]

• del_ray

--[[

del_ray(ray_num, wl, [zm])

ray_num: Ray number.

wl: Wavelength number.

[zm]: Zoom number, default: 1.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• reset_user_rays

--[[

reset_user_rays()

Remove all user defined rays.

--]]

• num_of_user_rays

--[[

num = num_of_user_rays(wl, [zm])

num: Returns number of user defined rays.

wl: Wavelength number.

zm: Zoom number, default: 1.

--]]

4.7.2 Ray Information

• ray_endinfo

--[[

res = ray_endinfo([rid])

res: Results table.

rid: Ray identification table.

Example rid = {

[f] = 1, -- Field. Use 0 for user defined rays.

[w] = <PWL>,-- Wavelength number.

[z] = 1,

[r] = 0|"ch" or 1 -- Ray number. Defaults to 1 for user rays

-- and 0 for reference rays.

-- See reference ray designation below.

}

-- Reference ray designation:

-- rnum Ref Ray (string)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

-- 0 -> Chief ray (CH).

-- 1 -> +X marginal ray (XP).

-- 2 -> -X marginal ray (XM).

-- 3 -> +Y marginal ray (YP).

-- 4 -> -Y marginal ray (YM).

Example return = {

w = <wl>,

z = <zm>,

seq = <bool>,

[error] = <string>, -- If there was an error.

node = {

{

pos = {x, y, z},

dir = {l, m, n},

E = {Exr, Exi, Eyr, Eyi, 0, 0},

sur = <str>, -- Info is local to this surface.

type = <str>, -- Incident, T, R, etc.

medium = <str>,-- Glass name.

phase = <phs>, -- Accumulated geometric phase.

ncost = {r, i} -- Index * obliquity factor.

}

}

}

A ray segment is bounded on each side by a ray node.

--]]

CPH> res = ray_endinfo()

CPH> list_tbl(res)

{

node = {

{

dir = {0, 0, 1},

pos = {0, 0, 0},

type = "I",

phase = 2.001,

sur = "S 3",

ncost = {1, 0},

medium = "AIR",

E = {0.9999, 0, 0, 0, 0, 0}

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

}

},

z = 1,

w = 1,

seq = true

}

• ray_info

--[[

res = ray_info([rid])

res: Results table.

rid: Ray identification table.

Return all nodes in the ray.

Example return = {

w = <wl>,

z = <zm>,

seq = <bool>,

nodes = { -- Array of nodes.

{ -- Node 1.

pos = {x, y, z},

dir = {l, m, n},

E = {Exr, Exi, Eyr, Eyi, 0, 0},

sur = <str>, -- Info is local to this surface.

type = <str>, -- Incident, T, R, etc.

medium = <str>,-- Glass name.

phase = <phs>, -- Accumulated geometric phase.

ncost = {r, i} -- Index * obliquity factor.

} ...

}

}

--]]

• ray_opd

--[[

opd = ray_opd(rid, surf_up, surf_down)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

opd: Return the optical path difference.

rid: Lua table with ray identification info.

surf_up: Upstream surface number. Cannot be image surface.

[surf_down]: Downstream surface number, default: next seq surface.

Get the optical path difference for a ray segment between the

first surface encounters.

All function signatures:

d = ray_opd({r = "ch"}, 3, 4) -- For sequential surfaces only

d = ray_opd({r = "ch"}, 3) -- Same as above.

d = ray_opd({r = "ch"}, "S 3", "N 4") -- More general call.

--]]

• ray_pos

--[[

x, y, z = ray_pos(rid, surf, glb)

rid: Lua table with ray identification info.

surf: Surface identifier.

[glb]: Global reference surface, if present.

Otherwise, local position.

All function signatures:

x, y, z = ray_pos({r = "ch"}, "S 3") -- Local position.

x, y, z = ray_pos({r = "ch"}, "S 3", "S 1") -- Global position on

-- S 3 wrt S 1.

x, y, z = ray_pos({r = "ch"}, 3, 1) -- Same as above.

x, y, z = ray_pos({r = "ch"}, 3) -- Local position on S 3.

--]]

• ray_dir

--[[

l, m, n = ray_dir(rid, surf, glb)

rid: Lua table with ray identification info.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

surf: Surface identifier.

[glb]: Global reference surface, if present.

Otherwise, local position.

All function signatures:

l, m, n = ray_dir({r = "ch"}, "S 3") -- Local direction.

l, m, n = ray_dir({r = "ch"}, "S 3", "S 1") -- Global direction on

-- S 3 wrt S 1.

l, m, n = ray_dir({r = "ch"}, 3, 1) -- Same as above.

l, m, n = ray_dir({r = "ch"}, 3) -- Local direction on S 3.

--]]

• list_ray

--[[

list_ray(rid)

rid: Table to identify ray.

List ray nodes, ray = {r = "ch", w = <wl>, z = 1, etc. }

Internally it calls ray_info function.

--]]

-- Example:

CPH> list_ray({f = 2})

SUR X Y Z L M GPH T,R A

S 2 0 0 0 0 0.1736 0 1 -

S 3 0 18.24 3.446 0 0.1736 105.1 0.9364 1

S 4 0 18.2 0.1408 0 -0.02394 107.7 0.9572 0.9992

S 5 0 15.46 0 0 -0.02836 204.1 - 1

Intensity transfer: 0.8956

Jones vector: Yamp/Xamp: 0, Yphi-Xphi: 0

4.8 Analysis

4.8.1 Thin Film

• stack_calc

--[[

res = stack_calc(params)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

res: Returns a 2D numeric table of results.

params = {

film = <filmname>,

substrate = <sub>,

[medium] = "AIR",

[w] = <wl>, -- Wavelength number, default: PWL.

[angs] = {0.0} -- Angles of incidence.

[z] = 1, -- Zoom number.

}

return table = {

{ang, Rs, Rp, Ts, Tp, Phase_Rs, Phase_Rp, Phase_Ts, Phase_Tp}...

}

One entry for for every angle of incidence.

Phase in degrees.

--]]

-- Example script to plot stack calculations.

params = {

film = "film1",

substrate = "gsl1",

medium = "AIR",

wl = 1,

z = 2,

angs = angles -- Calculated earlier, 0 to 90.

}

res = stack_calc(params)

plot_args = {

labels = {"Rs", "Rp", "Ts", "Tp", "Rs phase", "Rp phase",

"Ts phase", "Tp phase"},

title = "TB",

subtitle = "Test",

xlabel = "Angles in degrees",

ylabel = "R, T, Phase"

}

plot(res, plot_args)

Typical output of the above listing is shown in figure 4.4. The phase plots

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Figure 4.4: Stack calculation results.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

have been unselected to make the charts more clear.

4.8.2 First Order

• first_order

--[[

res = first_order([node_tbl], num)

res: Table containing first order results.

node_tbl: Table containing ray starting information.

num: Ending surface index. 0 => surface before the image.

It can also be zoom number, see all signatures below.

Example results table = {

FO = {

{x, y}, -- F1

{x, y} -- F2

{x, y}, -- m_ENP, Mag to stop.

{x, y}, -- m_XP, Mag to XP.

{x, y}, -- ENP_POS

{x, y}, -- PP1

{x, y}, -- NP1

{x, y}, -- XP_POS

{x, y}, -- PP2

{x, y} -- NP2

}

REF = {

{x, y, z}, -- First ref origin.

{l, m, n}, -- First ref Z axis.

{x, y, z}, -- Second ref origin.

{l, m, n} -- Second ref Z axis.

}

}

All function signatures:

res = first_order(nd_tbl, 5) -- Traces rays to estimate FOs.

Ending surface is 5.

res = first_order(3) -- System FOs for zoom 3.

res = first_order() -- System FOs for zoom 1.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

--]]

Calculates the first order properties of the system using the ABCD matrix
approach[4]. For this, base ray and rays close to the base ray are traced from
the start surface (usually defined by the starting node table) to the ending
sequential surface. From this ray trace, the system local ABCD matrix is
estimated and first order properties follow. All first order estimations in
COPHASAL follow this ABCD approach. System first order properties are
estimated between the first surface after ”S 1” and the surface before the
image surface.

Function result depends on the signature used. When tracing rays to
estimate the first order properties, the resulting table is as listed above.
When system first order properties are requested, then the resulting table
is like the one printed by the list_fo function. Note that system fist order
properties are estimated only for the meridian chosen in the system settings,
that is the value of the parameter USE_XZ.

4.8.3 Geometric

• spot_data

--[[

res = spot_data([params])

res: Return table.

params: Table of parameters.

example params = {

[grid] = 10, -- Grid size, even number within [4, 30].

[sym] = "NONE", -- Symmetry. [NONE|ROt|YZ|xz].

[z] = 1, -- Zoom number.

[w] = PWL, -- Wavelength number.

[f] = 1, -- Field number.

[sur] = "S <i>" -- Surface id. Default: image.

}

return res = {

rms = 0.0, -- RMS size.

airy = 0.0, -- F1 Airy disk size for reference.

-- Units of mm or radians.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

rays = 0, -- Number of rays traced. 0 => error.

chf2cen = {0.0, 0.0}, -- Chief to centroid.

uncliped = false -- Unclipped periphery,

-- True => need to check apertures.

spots = { -- Spot data array.

{x, y}... -- Surface local tangent plane intercept

-- position. Scatter plot this table.

}

}

Generate a spot pattern and information.

--]]

-- Example:

CPH> data = spot_data()

CPH> plot(data.spots, {type="scatter"})

Figure 4.5: Example spot pattern.

The scatter plot generated is shown in figure 4.5.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

4.9 Optimization

In the Lua interface, the optimizer is actually a new user data type called
Solver.5 It is initialized and used as follows.

--[[

opt = Solver.new([algo])

opt: Solver user type.

algo: Name of algorithm, default: "LN_COBYLA".

LN_COBYLA, -- Constrained Optimization BY Linear Approximations.

LN_BOBYQA, -- Bound Optimization BY Quadratic Approximations.

AUGLAG, -- Augmented Lagrangian.

GN_DIRECT_L, -- DIRECT-L, Lipschitzian optimization.

GN_CRS2_LM, -- Controlled Random Search with Local Mutation.

GN_ISRES, -- Improved Stochastic Ranking Evolution Strategy.

-- Only globall algo that supports constraints.

GN_ESCH, -- Evolutionary Strategy with Covariance Matrix

-- Adaptation.

G_MLSL_LDS, -- Multi-Level Single-Linkage with Local Direct

-- Search.

-- L stands for local algorithm and G for global.

--]]

local opt = Solver.new()

opt:set_cost(get_cost) -- Set the cost function.

opt:solve() -- Optimize, always minimizes.

-- Note the use of ":" and "." operators.

Listed next are the functions of the Solver type. Please note that these
function must be used with the ”:” operator as shown above.

5As of version 1.7.9, the internal optimization routines are based on some of the routines
from NLopt[6]. Only a subset of NLopt functionality is exposed here. Please refer to its
website for more details. This feature continues to be tested.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

4.9.1 Solver Setup

• set_cost

--[[

set_cost(func)

func: Name of the function with signature: double ()

That is it returns a number and accepts no arguments.

Note: If not set, the default built in cost function (get_cost)

is used. But this only works for the default algorithm. Hence,

set the cost function.

--]]

• add_eq

--[[

add_eq(func, tol)

func: Function, signature double ().

tol: Tolerance.

Equality constraints always target zero, that is it will try to

make func = 0.

--]]

• add_ineq

--[[

add_ineq(func, tol)

func: Function, signature double ().

tol: Tolerance.

Inequality constraints always target <= zero, that is it will

try to make func <= 0.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• set_local_solver

--[[

set_local_solver(name)

name: String, name of local optimization algorithm.

Default: LN_COBYLA

Only applicable to certain primary algorithms:

AUGLAG and G_MLSL_LDS.

--]]

• set_pop

--[[

set_pop(pop)

pop: Stochastic population size, default: 4.

Only applicable to certain algorithms:

GN_CRS2_LM, GN_ISRES, and G_MLSL_LDS.

--]]

• set_param

--[[

set_param(name, value)

name: Parameter name.

value: Parameter value.

Only applicable to certain algorithms, see NLopt documentation.

--]]

• set_rel_tol

--[[

set_rel_tol(tol)

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

tol: Relative tolerance for cost, default: 1e-15.

Solver will stop when the relative change in cost is less than

this value. Increase this => exit faster from optimization.

--]]

• set_abs_tol

--[[

set_abs_tol(tol)

tol: Absolute tolerance for cost, default: 1e-15.

Solver will stop when the change in cost is less than this value.

--]]

• set_max_eval

--[[

set_max_eval(max_eval)

max_eval: Maximum number of evaluations, default: 1000.

Set the maximum evaluations of the cost function.

If set to 0, the solver will only perform an evaluation run.

--]]

• set_time_limit

--[[

set_time_limit(time)

time: Maximum time in seconds, default: 60.

Set the time limit for optimization.

--]]

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

• solve

--[[

cst = solve()

cst: Retuns the final cost.

Minimizes the cost function.

--]]

• set_verbose

--[[

set_verbose(verb)

verb: false -> silent, otherwise verbose, default: true.

--]]

• cost

--[[

cst = cost()

cst: Returns cost function value.

--]]

4.9.2 Cost Function, Builtin

• set_cost_params

--[[

set_cost_params(params)

params = {

[type] = "SPOT_SIZE", -- Cost function type.

-- SPOT_SIZE -> variance in micron^2 or milliradian^2.

[grid] = 6, -- Grid size, even number within [4, 12].

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

[sym] = "NONE", -- Symmetry, NONE|ROt|YZ|xz.

[wtxy] = {1.0, 1.0}, -- Weight balance between X and Y.

[lat_clr] = true -- Lateral color. Set false to ignore,

-- useful for spectrometers.

}

Sets up the internal cost function.

--]]

• get_cost

--[[

cst = get_cost()

cst: Returns the internal cost function value.

Returns a large number if something goes wrong or

total energy in ray grid is negligible.

--]]

4.10 Tolerance Analysis

Function touch perturbs all the parameters for which there is defined a non
zero tolerance.

4.11 Script Generators

Functions in this section are primarily used by the function savefile. How-
ever, they are documented here in case they are useful.

• kind_of

--[[

knd = kind_of(id)

knd: String representing the type of item.

id: String, item id.

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

Mainly useful for surfaces as there are different kinds.

Kind of the surfaces: SPHERE, NSIN, etc.

Others will simply return "DEFAULT".

--]]

• active_prms

--[[

prms = active_prms(id)

prms: Table containing active parameters of an item.

id: String id of item. Like "S 1", etc.

return = {"X", "Y", ...}

For non-denizen prms, don’t specify item position, like

active_prms("W").

--]]

• prm_state

--[[

st = prm_state(id)

st: Table containing the state of the parameter.

id: String id of the parameter. Like "thi n 2", etc.

return = {

values = {<V1>, <V2>, ...},

-- Values of the parameter for each zoom. Only one value is

-- not zoomed.

reactions = {<R1>, <R2>, ...},

-- Reactions of the parameter. Here R1 is another table

-- (see below).

variable = {<bool>, <bool>, ...},

-- Varying status of the parameter.

tolerating = {<bool>, <bool>, ...},

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

-- Perturbing status of the parameter.

tolerance = {<double>, <double>, ...}

-- Tolerance value of the parameter.

}

R1 = {

source_name = "<source_name>",

-- Name of the source parameter. Empty => not reacting.

source_pos = <source_pos>,

-- Zoom number of the source.

destination_pos = <destination_pos>,

-- Zoom number of the destination.

scale = <scale>,

-- Scale of the reaction.

offset = <offset> -

- Offset of the reaction.

}

--]]

• active_userglass_recipies

--[[

rec = active_userglass_recipies()

rec: Table of recipies for user defined glasses in use in the

system.

return = { -- Array of recipies.

{

info = {},

-- For more information, see add_myglass docuemntation.

data = {}

} ...

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

}

--]]

• all_films_z1_recipies

--[[

rec = all_films_z1_recipies()

rec: Table of recipies for all thin films defined.

return = { -- Array of recipies.

{

film = "filmname",

layers = {

{"glass_name", thickness} ...

}

} ...

}

--]]

• global_ref_map

--[[

mp = global_ref_map()

mp: Table of IDs of global references for surfaces.

Get the table connecting surface to its global reference.

return = {

{<surf id>, <glb ref id>} ...

}

--]]

• stop_surface_list

--[[

stp = stop_surface_list()

CHAPTER 4. COMMAND LINE INTERFACE COPHASAL

stp: Table of stop surfaces for all zooms.

Get the list of stop surfaces for all zooms.

return = {<s1>, <s2> ...}

--]]

Chapter 5

System Settings

Aspects that affect the whole system are discussed here. These include the
system parameters, wavelengths, fields, and the reference rays.

5.1 System Parameters

System parameters are listed in the table 5.1.

Parameter Default Value Comment
PUPIL "EPD", ("EPD"|"ONA"|"STP")
P_VAL 1.0

POL_PLANE "COLLIMATED", ("COLLIMATED"|"RAYLOCAL")
POL_STATE {1, 0, 0, 0}

USE_XZ false

FOCAL_MODE "FOCAL", ("FOCAL"|"AFOCAL")

Table 5.1: System parameters and values.

5.1.1 Pupil

System pupil type is defined by the parameter PUPIL. It can accept the
following values. "EPD" for entrance pupil diameter, "ONA" for object space
numerical aperture, and "STP" for float by the stop maximum aperture di-
ameter. For calculating the object space numerical aperture, the real part of

103

CHAPTER 5. SYSTEM SETTINGS COPHASAL

the index of refraction of "GLS2" of object surface is used. Parameter P_VAL

is the value of the system pupil.

5.1.2 Polarization

Only polarized ray tracing is supported. Polarization state of the starting
rays is governed by the parameter POL_STATE. It is a table of 4 numbers
representing the real and imaginary part of the electric field in x̂ and ŷ
direction. The default is pure X polarization.

When reporting and accepting ray polarization state, please note that the
polarization state is in a coordinate system that is aligned with the ray such
that the coordinate system ẑ axis is aligned with the ray direction and the
ray electric field vector is in the XY plane.

However such a coordinate system keeps changing with the ray direc-
tion. It is more convenient to have a coordinate system that is static with
respect to the surface local coordinate system on which the ray information
is being sought. Out of the two coordinate systems available, the first one ("
COLLIMATED") addresses this aspect. These are associated with the parameter
POL_PLANE.

Collimated

This coordinate system is fixed to the surface local system. To obtain the
polarization Jones vector in this coordinate system, first the ray is hypothet-
ically reoriented such that it is parallel to the local ẑ axis. Then its electric
field vector is decomposed along the x̂ and ŷ axis to calculate the Jones vector
for the ray, at this surface.

Ray Local

As the name suggests, this coordinate system is local to the ray. That is
the ẑ axis is parallel to the ray direction. However, the coordinate system is
rotated about the ẑ axis such that the ŷ axis is in a plane formed by the ẑ
axis and the surface local ŷ axis.

5.1.3 Meridional Plane Selection

By default the first order properties of the system are estimated by construct-
ing the ABCD matrix[4] from rays traced in the YZ meridian. However, for

CHAPTER 5. SYSTEM SETTINGS COPHASAL

some cases, like an anamorphic system or tilted system, it may be necessary
to force this calculation for the XZ meridian instead. This can be done by
setting the flag USE_XZ.

5.1.4 Focal Mode Selection

The focal mode of the system is controlled by the parameter FOCAL_MODE. It
accepts the following values. "FOCAL" is used when the rays from a field are
expected to converge to a spot (or diverge from one), in the image space.
"AFOCAL" is used when the rays are expected to remain collimated in the
image space.

When switching from "FOCAL" to "AFOCAL" mode, please note that spatial
units in analysis functions will change to angular units and the "SPOT_SIZE"

based internal cost function is evaluated by replacing [x, y] with [l, m],
the associated direction cosines.

5.2 Wavelengths

Parameter Default Value Comment
WL 0.5 Wavelength, micron
WT 1.0 Weight
TEM 20.0 Temperature, centigrade
PRE 1.0 Pressure, atm
RH 0.0 Relative humidity, %

Table 5.2: Wavelength related parameters and values.

Parameters associated with wavelengths are listed in table 5.2. Please
note that since temperature, pressure and relative humidity directly affect
the calculation of the index of refraction (along with wavelength), they are
clubbed together here with wavelengths1. Here, WT is the weight of the wave-
length.

Apart from these parameters, there is also the primary wavelength des-
ignation. One of the system wavelengths is designated as the primary wave-
length and the first order properties are calculated for this wavelength. Func-

1Relative humidity is currently not included in the index calculations.

CHAPTER 5. SYSTEM SETTINGS COPHASAL

tions to set the primary wavelength is set_pwl. Also, wavelengths can be
inserted using the function ins_wl.

5.3 Fields

Parameter Default Value Comment
X 0.0 mm or degrees
Y 0.0 mm or degrees

VXP 0.0 +X Vignetting factor
VXM 0.0 -X Vignetting factor
VYP 0.0 +Y Vignetting factor
VYM 0.0 -X Vignetting factor
WT 1.0 Weight

FTYP "ANGLE", ("ANGLE"|"HEIGHT")

Table 5.3: Field related parameters and values.

Parameters associated with fields are listed in table 5.3. Fields can be
inserted using the function ins_fld. Please note that field type of "HEIGHT"
is not valid when the object is far away. Maximum field angle allowed is 89.9
degrees.2

5.3.1 Vignetting Factors

Vignetting factors are used to adjust the entrance pupil location where the
marginal rays of a field are aimed. When marginal rays are being iterated
(iterate_marginals), these factors are ignored. Parameters VXP, VXM, VYP,
and VYM define the vignetting factors. Consider figure 5.1. The marginal
way that was to be aimed at the positive Y edge of the entrance pupil in
the absence of any vignetting factors, is actually aimed at point (Y P) in
the presence of the associated vignetting factor V Y P . This adjustment is
described in the following equation.

Y P = R× (1− V Y P) (5.1)

Here the ideal entrance pupil radius is R.

2Chief ray aim point related controls will be exposed with the introduction of non-
spherical surfaces.

CHAPTER 5. SYSTEM SETTINGS COPHASAL

X

Y

XPXM

YP

YM

ENP

Figure 5.1: Entrance pupil (ENP), with marginal ray aim points based on
vignetting factors that are positive but less than 1.0.

5.4 Reference Rays

There are 5 reference rays for every wavelength of every field defined. We
will reuse figure 5.1 to describe them. Also check out the description of the
function ray_endinfo. These rays are numbered 0 through 4 and labeled as
”CH”, ”XP”, ”XM”, ”YP”, and ”YM” respectively. ”CH” is the chief ray
and is aimed at the center of the entrance pupil. Under ideal conditions, it
will then also go through the center of the stop and exit pupil. ”XP” is the
marginal ray aimed at the positive X entrance pupil edge, etc.

Reference rays serve as the back bone of sequential analysis as updating
them also requires updating the first order properties and assigning automatic
aperture values to the sequential surfaces.

There are no parameters associated with reference rays. The functions
to control these calculations are: iterate_marginals, iterate_all_chiefs,
ref_status, and list_fo. By default, all chief rays are set to iterate to the
center of the stop. Marginal rays are not iterated and the vignetting factors
are taken into account. For most applications this is recommended.

When ever the system is changed, the reference rays are recalculated. To
do so, first the chief rays are found using a multi start iterative algorithm.

CHAPTER 5. SYSTEM SETTINGS COPHASAL

The first order properties are then estimated. For this, the chief rays serve
as the optical axis and the estimated pupils are perpendicular to these axis.
Next, marginal rays are traced and this feeds into the next step of updating
the automatic apertures of the sequential surfaces.

When the object is far away, reference rays and hence the internal analy-
sis rays start at the next sequential surface, not the object. The assumption
being that when the object is far, its surface shape and glass are not impor-
tant3. The reference rays all start in a plane that is perpendicular to the
chief ray, that is they are collimated.

3To model atmospheric absorption in this case, a different strategy will have to be
adopted.

Chapter 6

Glasses

Any material transparent or partially transparent to optical radiation, in-
cluding gases and liquids, is called glass in COPHASAL. Functions associ-
ated with manipulating and maintaining glasses are listed in 4.4. We define
glasses using relative index, however, internally only the absolute index of
refraction is used.

6.1 Index of Refraction

The key role of glass is to provide the index of refraction values. The in-
dex values are always kept in sync with the zoom’s environmental state like
temperature and pressure. Here are the supported dispersion models.

6.1.1 Interpolate

Perhaps the most common model used to define user defined glasses. Linear
interpolation is used to calculate the complex index of refraction. At least one
data point (wavelength index pair) is needed. Providing the imaginary part
of the index is optional (it defaults to zero). No extrapolation is performed.

6.1.2 Gases

Dispersion model followed by gases including ”AIR” is based on Praktische
Physik[7]. This model provides only real index of refraction. The equation

109

CHAPTER 6. GLASSES COPHASAL

is listed below (6.1).

n = 1 +
(nref − 1)× P

1 + (T − Tm)× f
(6.1)

where:

nref = 1 +
(
a+ bλ2

cλ2−1
+ dλ2

eλ2−1

)
× 10−8

P = system pressure
T = system temperature
Tm = is index measurement temperature
λ = wavelength
a, b, c, d, e, f = constants whose default values are valid for AIR

6.1.3 Sellmeier

The Sellmeier dispersion equation (6.2) also provides the real index of refrac-
tion. Here also λ is the wavelength.

n2 = 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(6.2)

6.2 Absorption

There are two ways to provide material absorption. The default is to utilize
the imaginary part of the index of refraction (κ) and the other is to supply
a table containing the transmission measurements for a thick slab of the
material. For the second approach the transmission at system wavelength is
then based on linear interpolation.

6.2.1 Interpolate

When using this method, κ is ignored. This is assuming that an experimental
measurement accounts not only for scattering and other losses but also for κ.
When supplying the internal transmission tables, supply the slab thickness
in millimeters as the first transmission entry. COPHASAL ignores the first
wavelength for this purpose.

CHAPTER 6. GLASSES COPHASAL

6.2.2 Ordinary

When only κ is available, the internal absorption coefficient per centimeter
is calculated using equation (6.3).

α = −4πκ× 10000

λ
(6.3)

and

I = Ioe
αd

(6.4)

where:

I = new intensity
Io = old intensity
d = thickness, cm

6.3 Environmental Adjustments

For gases, environmental adjustment of index of refraction is already accom-
plished in equation (6.1).

6.3.1 Schott DNDT Equation

For optical glasses, the thermal model described in the Schott TIE docu-
ment[9] is the most commonly used model. It is applicable for solids and it
only accounts for the temperature changes. This approach is used to uprate
the index of refraction at the specified temperature of the zoom.

6.3.2 Thermal Expansion, Omega

COPHASAL treats the coefficient of thermal expansion as a continuously
varying quadratic function of temperature as shown in equation (6.5).

CTE(T) = C0 + C1(T − T0) + C2(T − T0)2 (6.5)

where:

CHAPTER 6. GLASSES COPHASAL

CTE = the coefficient of thermal expansion
T = system temperature
C0, C1, C2, T0 = parameters defining the thermal expansion

When only a single value of the CTE is available, simply assign it to C0.
The dimension change due to temperature change can then be calculated as
follows. ∫

dL

L
=

∫
CTE(T)dT

let

∫
CTE(T)dT = Ω(T)

=>L2 = L1 × (Ω(T2)− Ω(T1))

We can use the function omega to obtain the Ω of the material associated
with a surface for the zoom number.

6.4 Catalog Glasses

Catalog glasses have a special naming formate. The name is realized by join-
ing the glass name with the catalog name with the separator being the pipe
letter, "|". For example, "n-bk7|schott" is the N-BK7 glass from Schott.
User defined glasses don’t have the catalog part of the name, like "MyGlass".

Catalog file can be readily created once a CSV or other delimited text
data file containing the glass information is obtained. To easily parse such
files, there are open source Lua scripts available. Please contact us at
cophasal support@xloptix.com if you are interested in learning more.

Please note that errors may have been introduced during the generation
of the glass catalog file for COPHASAL. It is highly recommended to verify
the accuracy of this data against official vendor specifications before use, as
discrepancies could impact results.

6.4.1 Provided Catalogs

Schott

Schott glass catalog is provided in the file ”SCHOTT glasscat.lua”. This file
was created from the glass data spread sheet downloaded from www.schott.

com in 2024. Only the preferred glasses have been included.

www.schott.com
www.schott.com

Chapter 7

Thin Films

COPHASAL can model and optimize thin films1. Thin film modeling is based
on the characteristic matrix method[1]. Functions associated with thin films
are described in section 4.5. Function stack_calc is used to calculate thin
film performance. COPHASAL treats thin films just like the lens system,
layers can be updated on the fly, layer parameters can be addressed individ-
ually, made variable during optimization, etc. What follows is essentially a
simple thin film optimization example.

7.1 Layer Parameters

Table 7.1 lists the layer parameters. In order to address the parameters, the

Parameter Default Value Comment
THI 0.0
GLS2 "AIR"

Table 7.1: Film layer parameters and values.

identifying string must also contain the film name, for example "thi ’MgF2’

L 1".

1Cements will be implemented soon.

113

CHAPTER 7. THIN FILMS COPHASAL

7.2 Optimization Example

The listing below contains the script to define a single layer coating, attach
it to glass "n-bk7|schott", and optimize the layer thickness to minimize
reflection losses.

1 -- Script "filmopt.lua" to demonstrate film optimization.

2 blank()

3
4 -- User glass

5 local info = {glass = "gsl"}

6 local data = {

7 dispersion = "interpolate",

8 dispersion_data = {

9 {0.5}, -- wavelengths

10 {1.38} -- n, MgF2 based

11 }

12 }

13 add_myglass(info, data)

14
15 -- Film

16 local stack = {

17 film = "film",

18 layers = {

19 {"gsl", 10} -- 10 nm thick, 1/4 wave ~ 90.6 nm.

20 }

21 }

22 add_film(stack)

23
24 set("gls2 s 2", "n-bk7|schott")

25 set("flm s 2", "film") -- attach film to surface 2

26
27 add_ray({pos = {0, 0}}) -- on axis user ray

28 local rid = {

29 f = 0 -- user rays, default is 1.

30 }

31
32 local res = ray_endinfo(rid)

33
34 list_tbl(res)

35

CHAPTER 7. THIN FILMS COPHASAL

36 -- Ray power loss function

37 local function nodepowerloss()

38 -- NOTE: rays will be re-traced if any parameter is changed.

39 -- However, this is not the case with film parameters.

40 -- Hence we reset a surface parameter to set the retrace flag.

41 local thi = get("thi s 1")

42 set("thi s 1", thi)

43
44 -- Get the ray end info

45 local n = ray_endinfo(rid) -- Retraces the ray.

46 local E = n.node[1].E

47 local nc = n.node[1].ncost

48
49 -- Calculate power

50 local p = 0

51 for i = 1, #E do

52 p = p + E[i]^2

53 end

54 p = p * nc[1] -- Real part of ncost.

55
56 return (1-p) -- Power loss

57 end

58
59 print("Starting power loss: ", nodepowerloss(res))

60
61 vary("thi film l 1")

62
63 local opt = Solver.new()

64 opt:set_cost(nodepowerloss)

65 opt:solve()

66
67 print("Ending power loss: ", nodepowerloss(res))

68 print("Optimal thickness: ", get("thi film l 1"))

Please note line 38 through 40. It is the key for such a film optimization to
work. When the system is modified, a system modified flag is set in various
objects, like the user rays container. When user ray information is sought, the
object acknowledges the flag, resets it, and traces the rays afresh. However,
modifying thin film parameters does not set this flag. Hence the trick used
in these lines. If the function stack_calc is used directly, then this trickery

CHAPTER 7. THIN FILMS COPHASAL

is not needed.
On running this script, we get the following output. The starting power

loss is listed on line 19 and the final results at the end.

1 CPH> runfile"filmopt"

2 {

3 seq = true,

4 z = 1,

5 w = 1,

6 node = {

7 {

8 E = {0.7817, 0.1349, 0, 0, 0, 0},

9 pos = {0, 0, 0},

10 sur = "S 3",

11 phase = 2.522,

12 type = "I",

13 dir = {0, 0, 1},

14 medium = "N-BK7|SCHOTT",

15 ncost = {1.522, 0}

16 }

17 }

18 }

19 Starting power loss: 0.042349577797837

20 Optimizer : LN_COBYLA

21 Local Algo : LN_COBYLA

22 Dimension : 1

23 Cost Function : user_cost

24 Inequality Constraints : 0

25 Equality Constraints : 0

26 ------ Evaluation Run ------

27 Cost: 0.04235

28
29
30 ----------------------------

31 Eval No.: 43, Cost: 0.01297

32 Optimization complete, final cost: 0.012974

33 ------- Final Result -------

34 Cost: 0.01297

35
36
37 ----------------------------

CHAPTER 7. THIN FILMS COPHASAL

38 Ending power loss: 0.012973661204074

39 Optimal thickness: 90.554884201152

Chapter 8

Surfaces

Surfaces are the only structural objects in COPHASAL. They define a bound-
ary separating two (potentially different) mediums. Their properties include
shape, position, aperture, diffraction effects, ability to refract, reflect, or TIR,
etc. They bend the rays. Surfaces have a local coordinate system attached
to them and the two medium that they separate are accessed by the parame-
ters GLS1 and GLS2. The two medium are related to the local ẑ axis as shown
in figure 8.1. GLS2 is towards the positive ẑ axis side of the surface. For
this discussion, unless mentioned, position will imply both position as well
as orientation.

8.1 Surface Lists

In COPHASAL there are two lists of surfaces and and two kinds of rays, se-
quential (SEQ) and non-sequential (NSEQ). Rays can change between these
two modes on the fly. As the name suggests, NSEQ rays intersect with sur-
faces in the physical order and they can interact with all surfaces in both
SEQ and NSEQ surface lists. SEQ rays on the other hand never see surfaces
in the NSEQ list and they intersect with the SEQ surfaces in the sequential
order in which the surfaces are listed, from the first surface (like object) to
the last surface (image).

118

CHAPTER 8. SURFACES COPHASAL

z

y
Surface

GLS1

GLS2

Figure 8.1: Surface YZ , its local coordinate system, and GLS1 and GLS2.

8.1.1 Non-Sequential

Surfaces in this list are identified by the letter "N". These surfaces can be
placed in any order. They are positioned globally or with respect to a global
reference. The two medium on either side of the surface must be defined
with care to avoid the following ray tracing error.

Undefined Boundary Error

Consider the figure 8.2 to understand the cause of this error. After crossing
the surface boundary "N 1", the ray is in medium ”glass2”. However, when
it is incident on surface "N 2", there is a mismatch between the ray medium
and the incident medium on this surface. If this is the correct placement of
surfaces then perhaps GLS1 on "N 2" must be changed to ”glass2”.

8.1.2 Sequential

Surfaces in this list are identified by the letter "S". SEQ rays see these
surfaces in the strick sequential order. The first surface is considered the

CHAPTER 8. SURFACES COPHASAL

z

N 1

glass1

gass2

N 2

glass3

glass4ray

Figure 8.2: Depiction of a ray experiencing the undefined_boundary error on
surface "N 2".

object and the last one is the image. In between there has to be a stop
surface. These three surfaces cannot be deleted. Hence, there are always at
least three SEQ surfaces in the list. Because of the implied sequential order,
there are two aspects of this surface list that make use of this fact.

Position Cascading

The thickness parameter THI is used by these surfaces but not by the NSEQ
surfaces. Under normal circumstances, this places the next surface in the
sequential order at [0, 0, THI]. The thickness parameter by it self will
result in a train of surfaces in a line on the global ẑ axis. If needed this can
be changed by repositioning a surface resulting in a break in the position
cascading and start of new train starting from the repositioned surface. A
simple example depicting this is shown in figure 8.3.

CHAPTER 8. SURFACES COPHASAL

S 1 S 2

S 3 S 4

y

z

Figure 8.3: Surface "S 3" has been repositioned along the local ŷ axis.

Parity Cascading

The second aspect that utilizes the sequential ordering is the internal ac-
counting of surface parity which tracks the number of reflecting surfaces
before it. The advantage of this is that for SEQ surfaces we do not have
to worry about GLS1, it is automatically set. We only have to set the GLS2

and for surfaces that transmit, this is the following glass and for reflecting
surfaces this is the mirror substrate.

After a reflection the ray travels back in the same medium it was in
before reflection. However, after a reflection the sense of the ẑ direction
reverses hence the sign of dimensional parameters like the thickness, radius
of curvature, etc. must also be changed.

8.2 Common Surface Parameters

Parameters that are common to surfaces are listed in table 8.1. The following
sections explain in further detail the use of these parameters.

CHAPTER 8. SURFACES COPHASAL

Table 8.1: Parameters common to all surfaces.

Parameter Default Value Comment
X 0.0 mm, placement coordinates X
Y 0.0 mm, placement coordinates Y
Z 0.0 mm, placement coordinates Z

ALPHA 0.0 degrees, tilt about x̂ axis
BETA 0.0 degrees, tilt about ŷ axis
GAMMA 0.0 degrees, tilt about ẑ axis
XOF 0.0 mm, pivot point X
YOF 0.0 mm, pivot point Y
ZOF 0.0 mm, pivot point Z

REPOS "NONE", ("NONE"| repositioning mode
"BASIC"|
"BEND"|
"RETURN"|
"REVERSE")

THI 0.0 mm, thickness ε[10−11, 1011]
IGNR false rays ignore this surface
GLS1 medium −z side glass name
GLS2 medium +z side glass name
RFR "TRANSMIT", ("TRANSMIT"| refract mode

"REFLECT"|
"TIR_ONLY")

FLM "" attached film name
SBS true film substrate is GLS1

auto sets if GLS1 is solid
TFD {0, 0, 0, 0} {x0, y0, c0, c1}, film taper

new thickness t = t0 × (1 + F)
F = |c0 + c1 × |r− r0|2|
r = [x, y]; r0 = [x0, y0]

USE_JM false use Jones matrix, not coating
JM { {1, 0, 0, 0}, 2× 2 complex Jones matrix

{0, 0, 1, 0} }

APDZ {0, 0, 0, 0} {cx, cy, gx, gy}, apodization

e = e× e(−gx(x−cx)2−gy(y−cy)2)
DOE "NONE", ("NONE"| diffraction mode

CHAPTER 8. SURFACES COPHASAL

Table 8.1: Parameters common to all surfaces (contin-
ued)

Parameter Default Value Comment
"LINEAR") grating

DE0 0 diffraction order
DE1..DE13 diffraction mode specific

AUT_APE automatic aperture value
APE "AUTO", ("AUTO"| aperture mode

"CIR"| circle
"ELL"| ellipse
"REC"| rectangle
"HEX"|) regular hexagon

MX_APE AUT_APE mm, radius of the outer enclos-
ing circular aperture. ANDs
with the user defined aperture
shape

DX 0.0 mm, aperture X decenter
DY 0.0 mm, aperture Y decenter

SZX 0.0 mm, aperture X size
SZY AUT_APE mm, aperture Y size
ROT 0.0 degree, rotation of the decen-

tered aperture about ẑ.
OPEN true aperture not obscuration

8.3 Coordinate System

In the default state, "S 2" is placed at the global origin. In COPHASAL
all coordinate systems and rotations are right handed. Surfaces are defined
in surface local coordinate system. To place the surface at another location
than the global origin, this coordinate system can be repositioned, and this
is the only way NSEQ surfaces can be placed appropriately.

8.3.1 Reposition

Repositioning of a surface can be enabled by setting the REPOS parameter
to the appropriate reposition mode string. By default, no repositioning is

CHAPTER 8. SURFACES COPHASAL

enabled. After REPOS is set to any mode other than "NONE", the repositioning
parameters (X, Y, Z, ALPHA, BETA, GAMMA, XOF, YOF, and ZOF) are enabled and
the surface is repositioned with respect to the prevailing coordinate system
according to the mode.

"BASIC"

The repositioning of the coordinate system is done as follows.

1. Coordinate origin shifted to [X, Y, Z]

2. Coordinate system rotated by ALPHA about x̂

3. Coordinate system rotated by BETA about ŷ

4. Coordinate system rotated by GAMMA about ẑ

In this case the rotations do not change the origin. However, if non zero values
for the offset pivot point ([XOF, YOF, ZOF]) is supplied, then the tilting is
performed about this offset point. This will change the coordinate origin.
This is depicted in figure 8.4. In this example, "S 2" has been repositioned
with an offset pivot point. Please note that the pivot point is given by the
coordinates [XOF, YOF, ZOF] in the decentered coordinate system.

For SEQ surfaces. after this repositioning, the surface train continues as
before, but along the new ẑ axis.

"BEND"

This mode is same as "BASIC" except that for SEQ surfaces, the surface train
continues along a ẑ axis that is obtained by further bending the coordinate
system in the same sense as defined by the tilt angles. This mode is useful
when inserting fold mirrors, for example, as shown in figure 8.5. Note how
the thickness parameter on "S 2" must be negative (because of the final ẑ
axis orientation).

"RETURN"

In this mode, the final coordinate system is actually the one before reposition-
ing. That is, after repositioning the surface, we return back to the starting
coordinate system. This is useful during tolerance analysis to perturb a single
surface, for example.

CHAPTER 8. SURFACES COPHASAL

S 1

y

z

S 2

z

z

z

decenter
pivot
point

tilt

S 2

Figure 8.4: "S 2" repositioned with tilt about an offset point.

"REVERSE"

This is the reverse of the "BASIC" mode and can be used to undo it. In this
mode, the order of operations and sign of decenter and tilt parameters is
reversed. The order of operations is as follows.

1. Coordinate system rotated by -GAMMA about ẑ

2. Coordinate system rotated by -BETA about ŷ

3. Coordinate system rotated by -ALPHA about x̂

4. Coordinate origin shifted to [-X, -Y, -Z]

Pivot point for tilting is still defined by [XOF, YOF, ZOF]. Additionally, in
contrast to the "BASIC" mode, the surface local coordinate system is not af-
fected by this repositioning, but the subsequent coordinate system is affected.

8.3.2 Global Referencing

The modes discussed in the previous section repositions the surface with re-
spect to their nominal coordinate system. This nominal coordinate system

CHAPTER 8. SURFACES COPHASAL

S 1

y

z

45o fold,
about x

z
S 2

Figure 8.5: Surface 2 is mirror with reposition mode "BEND" and ALPHA of
45o. Dashed arrow is ẑ of the coordinate system in which mirror is defined.
The centerline arrow is the final ẑ after further bending.

CHAPTER 8. SURFACES COPHASAL

can be changed to the coordinate system of another surface by globally refer-
ring to the surface. Functions to facilitate this are set_glb_ref, del_glb_ref,
list_glb_refs, and list_glb_position.

If a SEQ surface globally refers to another surface, the thickness of the
previous SEQ surface is then not used. A common use of this functionality is
to isolate groups of element. There are some limitations on setting up global
referencing.

• A surface can refer only backwards in the list. Example, "N 4" can
refer to "N 2", but not the other way round.

• SEQ surface cannot refer to NSEQ surfaces. Example, "N 3" can refer
to "S 5" but the other way round.

8.3.3 Best Practice

Models with complex repositioning schemes can be hard to understand and
bad for posterity. The later can be far more important. For such reasons,
please keep repositioning schemes simple. If possible, maintain symmetry
about a meridian. As a convention, we will use the YZ meridian. Here are
few specifics to note.

• For sequential surfaces, avoid large tilts that can flip the direction of
ẑ, which can result in the undefined boundary error.

• COPHASAL accounts for the relative GAMMA rotation between the start
and ending surface when estimating ABCD matrix, however, large rel-
ative rotation can lead to first order calculation errors. For this reason,
it is better to isolate GAMMA rotations. However, AUT_APE estimates are
still accurate.

8.4 Optical Properties

8.4.1 Refract Mode

The refract mode of a surface can be changed by setting the RFR mode. Note
that for SEQ surfaces, after a reflection the signs of quantities like thickness

CHAPTER 8. SURFACES COPHASAL

change. For reflecting surfaces, GLS2 acts as the substrate1.

8.4.2 Diffractive Properties

A surface can be converted into a diffractive optical element by changing
the DOE mode to something other than "NONE"2. After this change, surface
parameters DE0 and higher are enabled.

DE0 is the diffraction order.

"LINEAR"

Use this mode to model linear gratings. This mode also needs parameters
DE1 through DE4.

DE1 is the grating pitch in mm, default is 0.0 which means that the default
grating frequency is also 0.0.

[DE2, DE3, DE4] defines a vector parallel to the grating vector. Its default
value is [0, 1, 0], that is the vector is pointing in the surface local ŷ
direction. Grating vector is internally normalized.

The pitch and the grating vector defines three dimensional grating planes.
The intersection of these planes with the surface results in the fringe or
rulings on the surface. The local fringe pattern at the ray surface intersection
point is used to diffract the ray.

Please note that diffraction efficiency is not calculated. It is assumed that
the efficiency is 100%.

8.4.3 Thin Film and Related Properties

Thin Film

Films are attached to the surface by assigning the film name to the FLM

parameter. The film must first be defined before attaching to surface, see
function add_film.

1Currently, COPHASAL does not automatically assign a metal to GLS2. It must be
assigned a glass manually.

2Currently only one other mode is supported that is the linear grating.

CHAPTER 8. SURFACES COPHASAL

If GLS1 is solid, COPHASAL automatically assumes that this is the sub-
strate for the film. However, this can be change by setting the SBS flag. Set
it to true of film substrate is GLS1. This can be important when considering
reflections and there are absorbing layers in the film stack.

Tapered Film Definition

Thin film manufacturing process can result in layer thickness variation that
is a function of the lateral position on the surface. This can modeled with
the TFD parameter which accepts a table of 4 numbers, {x0, y0, c0, c1}. The
relationship between the nominal thickness t0 and the actual thickness used
for calculation is given by equation (8.1).

t = t0 ×
(
1 + |c0 + c1 × |r− r0|2|

)
(8.1)

Here r = [x, y], the lateral position on the surface, and r0 = [x0, y0]. Equation
(8.1) represents a parabolic thickness error centered about r0. Note that if
r0 is placed far away, the taper approximately becomes a wedge.

Jones Matrix

It is possible to apply a Jones matrix to the complex electric field of the ray
interacting with the surface, however, it cannot be applied when there is a
film attached to the surface. To apply a Jones matrix, first set the USE_JM

flag to true and then supply the Jones matrix by updating the parameter JM

with a table of tables. Here is an example of updating this parameter.

set("use_jm s 2", true)

JM = { {jm11, jm12, jm13, jm14},

{jm21, jm22, jm23, jm24} }

set("jm s 2", jm)

Here is how this is interpreted.

JM =

[
jm11 + jm12i jm13 + jm14i
jm21 + jm22i jm23 + jm24i

]
The electric field is updated as follows.

e(new) = JM× e (8.2)

where

e =

[
ẽx
ẽy

]

CHAPTER 8. SURFACES COPHASAL

In equation (8.2), e is the complex electric field vector with no component in
the ẑ direction. This is because this calculation is performed in a polarization
coordinate system in which the ray direction is parallel to the ẑ axis. This
coordinate system is defined by setting the parameter POL_PLANE (see table
5.1).

8.4.4 Apodization

Surfaces can be set to impart apodization to the incident electric field. To
enable apodization set the parameter APDZ with non zero values of gx and
gy. The electric field amplitude change is described in equation (8.3). Here,
[cx, cy] is the center of the Gaussian apodization.

e(new) = e× exp
(
−gx(x− cx)2 − gy(y − cy)2

)
(8.3)

8.5 Aperture

Apertures define the shape of the physical extant of the surface through with
the rays can pass. It is actually the projection of the opening, along ẑ, on the
XY plane. SEQ rays that are outside of the aperture are not blocked but are
sapped of all energy. NSEQ rays that are out of aperture, miss the surface.
Apertures are defined in the surface local coordinate system. Broadly, there
are two kinds of apertures, automatic aperture and user defined aperture.

8.5.1 Automatic Aperture

The automatic aperture has a circular shape, is centered, and is setup to
be the parameter AUT_APE of the surface. It is not user modifiable. It is
automatically set by the system reference rays to pass all marginal rays. For
the stop surface, if marginal rays fail to increase this radius from default of
0.0, this value is set to be the ideal stop size based on system pupil settings.

8.5.2 User Defined Apertures

To define a user defined aperture, the APE mode must be changed from AUTO

to the desired mode.
All user defined modes are composed of two shapes, an outer centered

circular shape with radius MX_APE, and an inner shape defined by the mode

CHAPTER 8. SURFACES COPHASAL

and parameters DX, DY, SZX, SZY, ROT, and OPEN. The actual aperture is
the logical AND between these two shapes.

X

Y

ROT

[DX, DY]

SZY

SZX

MX_APE

Figure 8.6: Example of setting up a rectangular aperture. The shaded rect-
angle is the actual aperture realized as outer circle AND rectangle.

The outer shape is always open inside and blocks outside. The inner
shape is by default open inside but this can be changed to being open outside
and blocking inside by setting OPEN to false. An example of a rectangular
aperture is shown in figure 8.6. The following are the supported aperture
modes.

"CIR"

This is a circular aperture. Parameters SZX and SZY have special meaning,
while ROT has no effect for this mode. This mode can also describe an annular
aperture as shown in figure 8.7.

SZX is the inner radius of the annulus. Default value of 0.0 means that it is
a simple circular aperture without a central obscuration. It is intended
not to exceed SZY.

CHAPTER 8. SURFACES COPHASAL

SZY is the outer radius of the annulus. Default is AUT_APE.

When changing from "AUTO" to "CIR", the automatic aperture is converted
to a circular aperture.

SZY,
MX_APE

SZX

Figure 8.7: Example of an annular aperture. SZY is the outer radius and
MX_APE = SZY. Inner radius is SZX.

"ELL"

This mode describes an elliptical aperture. Its setup is similar to that of
"REC", see figure 8.6.

"REC"

This mode describes a rectangular aperture. See figure 8.6. Parameters SZX

and SZY are the semi widths along the respective axis.

"HEX"

This mode describes a hexagonal aperture. This mode does not make use of
the SZX parameter. An example of this aperture shape without any rotation
is shown in figure 8.8.

CHAPTER 8. SURFACES COPHASAL

X

Y MX_APE

2 SZY

Figure 8.8: Hexagonal aperture with out any ROT.

8.6 Ignore Surface

In COPHASAL, all rays will ignore a surface whose IGNR flag has been set to
true. Note that only rays will stop seeing the surface, however, the surface
will continue to make its presence felt to other surfaces. For example, THI

of an ignored SEQ surface still matters. Object, stop surface, and image
cannot be ignored. An example of the use of this feature is to model optical
elements that can be flipped in and out of the optical train.

An important consequence of ignoring a surface is the potential of intro-
ducing the undefined boundary error (8.1.1). For this reason, it is recom-
mended to ignore entire optical elements, like both surfaces of a lens.

Chapter 9

Surface Types

In addition to the common surface parameters (table 8.1), each surface type
can support additional parameters and associated functionality. Different
surface types identified by the type table entry can be inserted using the
function ins_surf. This chapter lists the different surface types available in
COPHASAL.

9.1 Sphere

A standard spherical shape is provided by the surface type "SPHERE". The
additional parameters supported by spheres are listed in table 9.1.

Parameter Default Value Comment
CUY 0.0 1/mm, curvature
RDY 0.0 mm, radius of curvature. Not a real

internal parameter. Only for help with
setting the curvature. RDY = 0.0 =>

CUY = 0.0.

Table 9.1: Additional parameters of the spherical surface.

9.2 Conic

A conic surface shape is provided by the surface type "CONIC". The additional
parameters supported by conics in addition to those supported by spheres

134

CHAPTER 9. SURFACE TYPES COPHASAL

Parameter Default Value Comment
CONY 0.0 conic constant, k

Table 9.2: Additional parameters of the conic surface.

are listed in table 9.2. The sag of the conic surface is given by equation (9.1).

z =
cr2

1 +
√

1− (1 + k)c2r2
(9.1)

where:

c = curvature

r =
√
x2 + y2

k = conic constant

k < −1 k = −1 −1 < k < 0 k = 0 k > 0
Hyperboloid Paraboloid Ellipsoid Sphere Oblate Ellipsoid

Table 9.3: k values and conic surface shape.

9.3 QCON Asphere

Parameter Default Value Comment
NRAD 0.0 mm, normalization radius, Default is

AUT_APE or 1.0
EPm 0.0 mm, coefficient for the asphere poly-

nomial term of order 2m + 4. with
m <= M . For example, parameter for
the coefficient of order 4 polynomial is
EP0 as m = 0

Table 9.4: Additional parameters of the qcon surface.

The QCON asphere surface shape[3, 2] is defined by surface type "QCON".
The additional parameters supported by QCON asphere in addition to those

CHAPTER 9. SURFACE TYPES COPHASAL

supported by conics are listed in table 9.4. The sag of the QCON surface is
given by equation (9.2).

z =
cr2

1 +
√

1− (1 + k)c2r2
+ u4

M∑
m=0

EPm×Qcon
m (u2) (9.2)

where:

u = r/nrad
nrad = normalization radius
Qcon
m (x) = polynomial of order m

EPm = extra parameter EPm

M = max order of polynomial

The maximum order of the polynomials, M , is 6. Figure 9.1 shows the
first few terms. Only the absolute value of the normalization radius is con-
sidered.

Figure 9.1: u4Qcon
m (u2) as a function of u for various values of m.

9.4 Toric

This is the toroidal surface shape, defined by the surface type "TORIC". The
YZ profile of a toric surface is the same as that of the QCON asphere and

CHAPTER 9. SURFACE TYPES COPHASAL

Parameter Default Value Comment
CUX 0.0 1/mm, curvature
RDX 0.0 mm, radius of curvature. Not a real

internal parameter. Only for help with
setting the curvature. RDX = 0.0 =>

CUX = 0.0.

Table 9.5: Additional parameters of the toric surface.

is obtained by replacing the radial position r with the local y ordinate in
equation (9.2). The surface is realized by revolving this YZ curve about an
axis parallel to the ŷ and located at [0, 0, RDX]. With RDX of 0.0 and no
other aspheric contributions, we obtain a cylinder whose axis is x̂.

Please note that this surface is ill-defined when the YZ profile of the
surface intersects the axis of revolution. No attempt is made to check for
this situation.

9.5 NSIN and NSOUT

These surfaces are primarily intended to toggle the sequential mode of a ray
intersecting with them. The ray must intersect within the aperture. "NSIN"

converts a ray to a NSEQ ray and "NSOUT" converts the ray to a SEQ ray.
These surfaces can only be placed in the sequential surfaces list. A typical
use case of these surfaces is to enclose a NSEQ group of surfaces starting from
a "NSIN" and ending with a downstream "NSOUT" surface. However, once a
ray is converted to NSEQ mode, it can potentially even skip the "NSOUT"

surface.
It is important to consider the difference in behavior of NSEQ rays com-

pared to SEQ rays when it comes to apertures. When SEQ rays fall out of
aperture, their energy is sapped but they continue on tracing towards the
image surface. NSEQ rays on the other hand, skip the surface and there is
no entry of their intersection on that surface1. Hence, the algorithm to set
the automatic apertures on such a surface will skip the surface as well. It is
thus advisable to set user defined apertures for such cases.

1It is possible that a NSEQ ray has a chance to interact with a surface multiple times,
but for the purposes of reference rays, only the first interaction matters.

Chapter 10

Analysis

Most analysis features involve tracing rays, either user-defined or internal
rays. Apertures, whether automatic or not, are always taken into account.
For functions that trace a grid of rays across the pupil, the ray grid overfills
the pupil in the expectation that some aperture in the system will block the
rays in periphery of this grid. If any of these peripheral rays is not blocked by
an aperture, the function sets the flag unclipped to true in the return value.
This is usually a sign that the apertures are not in step with the pupil value.

10.1 Ray Tracing and Analysis

Functions associated with ray tracing and information access are described
in Section 4.7.

10.1.1 Starting of Rays

Rays are defined in the local coordinate system of the surface. The input of
the electric field is interpreted according to the parameter POL_PLANE and the
starting power is unity.

Here are the steps taken before the starting node of a ray is calculated.

1. The actual ray surface intersection is calculated.

2. In the presence of coating, the ray intersection point is adjusted. See
figure 1.1.

138

CHAPTER 10. ANALYSIS COPHASAL

3. The electric field is normalized by the real part of the index of the
medium. That is enew = e/

√
nr.

4. The ray is propagated to the adjusted intersection point, updating the
electric field and geometric phase in the process.

The ray starting medium is assumed to be homogeneous and isotropic. An
upper limit of 1000 is imposed on the number of segments in a ray. The
upper limit on the angle of incidence is 89.9 degrees.

10.2 First Order Analysis

Function first_order provides the first order cardinal points of the system
between two surfaces. Also see function list_fo.

10.3 Geometric Analysis

10.3.1 Spot Size

Function spot_data generates spot data and information. Only rays with
non zero energy are considered and the spot variance calculations are based
on energy weighted moments. For example, the first moment for x is given
by the equation (10.1). Here, εi is the energy in the individual ray.

< x >=

∑
(εixi)∑
εi

(10.1)

10.4 Thin Film Analysis

Function stack_calc calculates the s and p amplitude reflectance and trans-
mittance.

Chapter 11

Optimization

Optimization in COPHASAL1 is performed by first instantiating and updat-
ing a user data type called the Solver. Then invoking the function solve of
the Solver data type. Functions associated with optimization are listed in
section 4.9.

Every optimization problem needs a cost function to minimize and a set
of variable parameters to manipulate, in order to achieve the minimization
goals. In COPHASAL, variables are defined by designating parameters as
variables using the function vary. Without the cost function and variables,
minimization cannot proceed.

11.1 Constrained Optimization Example

An example of using the Solver for general function optimization is shown in
the listings below. The cost function is given by the equation (x−1)2+(y−2)2.
This has to be minimized such that y ≥ 4− x. This problem is described in
the figure 11.1.

-- Contents of file test.lua

blank()

-- For variables, we will use the DE parameters of a surface

-- with DE0 = 0. Hence the optical system will not be affected.

1This feature is currently based on NLopt[6] and is still being tested and updated. Only
LN COBYLA, and to a lesser extant LN BOBYQA, have been tested so far. Please see
NLopt documentation for details.

140

CHAPTER 11. OPTIMIZATION COPHASAL

Y

X

[1, 2]

[1.5, 2.5]

Y = -X + 4

Feasible region

Figure 11.1: Graphical depiction of the optimization example.

set("doe s 2", "linear")

vary("de1 s 2") -- x

vary("de2 s 2") -- y

local center = {1, 2} -- Center point.

-- The cost function to minimize.

-- Minimum of 0 is at the center point.

local function my_cost()

local x = get("de1 s 2")

local y = get("de2 s 2")

local r = {x - center[1], y - center[2]}

return r[1]*r[1] + r[2]*r[2]

end

-- First unconstrained optimization.

local o = Solver.new("LN_COBYLA") -- Default.

CHAPTER 11. OPTIMIZATION COPHASAL

o:set_cost(my_cost)

o:set_verbose(false)

o:solve()

-- Results.

print("Unconstrained optimization:")

print("Final cost: " .. o:cost())

print("At [x, y] = ["..get("de1 s 2")..","..get("de2 s 2").."]")

-- Now we will add an inequality constraint.

-- y >= -x + 4 => y + x - 4 >= 0

local function ineq()

local x = get("de1 s 2")

local y = get("de2 s 2")

return 4 - y - x

-- Solver always tries to set ineq() <= 0

-- Hence we need to negate the inequality.

end

o:add_ineq(ineq, 1e-6)

-- Constraint optimization.

o:solve()

-- Results.

print()

print("Constrained optimization:")

print("Final cost: " .. o:cost())

print("At [x, y] = ["..get("de1 s 2")..","..get("de2 s 2").."]")

CPH> runfile"test"

Unconstrained optimization:

Final cost: 3.7185048536536e-16

At [x, y] = [0.99999999921645,2.0000000192675]

Constrained optimization:

Final cost: 0.5

At [x, y] = [1.5000000097274,2.4999999902726]

CHAPTER 11. OPTIMIZATION COPHASAL

11.2 Solver Data Type

Instantiating and setting the Solver type is described in section 4.9. Here
some of these aspects will be discussed in further detail.

11.2.1 Solver Algorithms

The ”L” in the algorithm names stand for local optimizers and ”G” stands for
global optimizers. The following are the algorithms that have gone through
basic testing.

LN_COBYLA

This algorithm supports constraints.

LN_BOBYQA

This algorithm does not directly support constraints.

AUGLAG

This is the Augmented Lagrangian algorithm and its main use is to enable
constraint management for other optimization algorithms. For example, a
Solver can be created with this as the primary algorithm and LN_BOBYQA

can be designated as the local optimizer (see function set_local_solver).
This way, we will have constrained optimization even with the LN_BOBYQA

algorithm2.

11.2.2 Settings

The maximum number of cost function evaluations can be set using the
function set_max_eval. Set it to 0 to perform an evaluation run. The system
will not be changed in such an optimization run. But the cost function and
the constraints functions will be evaluated. Any inconsistencies and errors
during this evaluation run should be addressed before performing the actual
optimization.

2Currently, the convergence with this algorithm is slow.

CHAPTER 11. OPTIMIZATION COPHASAL

11.3 Cost Functions, Builtin

The internal cost function value is obtained from get_cost. The internal cost
function is setup using set_cost_params.

"SPOT_SIZE", is the default cost type and provides the weighted mean
spot variance. Its calculation is described in the following equations. The
variances are calculated using ray energy weighted moments. Let the spot
variance in x̂ for a particular wavelength, field, and zoom number be given by
σ2
x(w, f, z). When lateral color is being considered, the primary wavelength

centroid for the field and zoom is chosen as the reference origin in moments
calculations. Otherwise it is the spot centroid for the current wavelength it-
self. When lateral color is ignored, each spot size is minimized independently,
useful in a spectrometer for example.

The combined spot variance is calculated as shown below.

σ2(w, f, z) = WTxy[1]σ2
x(w, f, z) +WTxy[2]σ2

y(w, f, z)

Here WTxy is the wtxy table entry. This can be used to shift the balance
between the X and Y aberrations components, useful for anamorphic systems
for example.

For calculating the total cost function, let WTw(z) be the weight of a
wavelength at a zoom number and WTf (z) be the field weight. The total
variance is calculated by equation (11.1).

σ2 =

∑
w,f,z

(
σ2(w, f, z)×WT 2

w(z)×WT 2
f (z)

)∑
w,f,z

(
WT 2

w(z)×WT 2
f (z)

) (11.1)

Chapter 12

Tolerancing

Every practical design must account for manufacturing limits and natural
fabrication errors by performing a tolerance analysis. Skip this step and
there will be reckoning, hopefully before the manufacturing begins.

Functions that support tolerance analysis are listed in section 4.1.3. There
are two modes of performing tolerance analysis, linear model based1, and
script driven Monte Carlo simulations.

12.1 Monte Carlo Simulations

Monte Carlo simulations in COPHASAL are driven by user scripts and allow
full control. A simple example follows.

--[[

First, define a singlet lens, one wavelength and field.

--]]

blank()

-- System settings

set("P_VAL", 20, 1)

-- Sequential surfaces

set("THI S 1", 1e11);

set("THI S 2", 100.0);

1The linear model based tolerance analysis coming soon.

145

CHAPTER 12. TOLERANCING COPHASAL

ins_surf("S 3", {type = "SPHERE",

glass = "N-BK7|SCHOTT",

rdy = 50.0,

thi = 5.0})

ins_surf("S 4", {type = "SPHERE",

glass = "AIR",

rdy = 1176.0,

thi = 96.57})

set_stop(2)

-- Variables

vary("cuy s 3")

vary("cuy s 4")

-- Optimize

local opt = Solver.new()

opt:set_cost(get_cost)

opt:solve()

-- Starting results.

local data = spot_data()

-- plot(data.spots, {type="scatter"})

local ideal_rms = data.rms

print(string.format("Ideal RMS: %.3f um", ideal_rms*1000))

--[[

Perform basic tolerance analysis.

Define tolerances, run a Monte Carlo simulation

and plot the results.

--]]

-- Define tolerances

set_tol("thi s 4", 0.25)

set_tol("cuy s 3", 1e-4)

set_tol("cuy s 4", 1e-4)

-- Monte Carlo Simulation

CHAPTER 12. TOLERANCING COPHASAL

local trials = 1000

local rms = {}

for i = 1, trials do

touch()

local data = spot_data()

rms[i] = data.rms

undo()

end

-- Plot results

local histdata = hist_table(rms)

plot(histdata, {type="bar",

title="RMS Histogram",

xlabel="RMS (mm)",

ylabel="Frequency",

labels = {"RMS Spot Size"} })

Figure 12.1: Layout of the lens ready for Monte Carlo simulations.

The optimized lens layout is shown in figure 12.1. The surface listing is
shown next.
CPH> list"s"

S:

Z1: LBL TYP RDY THI MED RFR AUT_APE...

S 1 SPHERE 0 1e+11 AIR TRANSMIT 0

S 2 SPHERE 0 100 AIR TRANSMIT 10

S 3 SPHERE 50.02 v 5 N-BK7|SCH TRANSMIT 10

S 4 SPHERE 1004 v 96.57 AIR TRANSMIT 9.719

S 5 SPHERE 0 0 AIR TRANSMIT 0.03897

Stop: 2

Listing 12.1: Listing of sequential surfaces.

The script output follows and the resulting histogram plot is shown in figure
12.2.

CPH> runfile"test"

Optimizer : LN_COBYLA

Local Algo : LN_COBYLA

CHAPTER 12. TOLERANCING COPHASAL

Dimension : 2

Cost Function : user_cost

Inequality Constraints : 0

Equality Constraints : 0

------ Evaluation Run ------

Cost: 3193

Eval No.: 1000, Cost: 338.7

Optimization complete, final cost: 338.710535

------- Final Result -------

Cost: 338.7

Ideal RMS: 19.299 um

CHAPTER 12. TOLERANCING COPHASAL

Figure 12.2: Histogram of the Monte Carlo simulation.

Appendix A

Error Codes

A.1 Ray Trace Errors

Error Code Meaning
thick metal layer Thick metal layer in film

thick TIR layer Thick TIR layer in film
null index Null index of refraction

unexpected TIR No transmit, unexpected TIR
could not TIR No TIR in a TIR only mode

could not diffract No diffraction in order
negligible power Ray power too low

too many segments Too many segments in ray
skips surface Ray does not see the surface

skips all surfaces Ray misses all surfaces
too steep aoi Angle of incidence too steep

undefined boundary Ray and surface medium mismatch
illegal surface Blanket code for illegal input

iterator trouble Blanket code for iteration failures
arithmetic fault A GRIN can cause this

Table A.1: Ray trace error codes that the user can expect to encounter.

150

APPENDIX A. ERROR CODES COPHASAL

A.2 Index Calculation Errors

Error Code Meaning
WL OUT OF RANGE Wavelength out of range

TEM OUT OF RANGE Temperature out of range
PRE OUT OF RANGE Pressure out of range

RH OUT OF RANGE Relative humidity out of range
SCHOTT ARITH FAULT Arithmetic fault, Schott DNDT

SELLMEIER ARITH FAULT Arithmetic fault, Sellmeier

Table A.2: Index of refraction calculation error codes that the user can expect
to encounter.

Appendix B

Software Libraries Used

COPHASAL has leveraged external software libraries. A list of these li-
braries and their associated license texts can be found in the accompanying
document, software libraries.pdf.

152

Index

active_prms, 99
active_userglass_recipies, 100
add_catalog_glass, 74
add_eq, 94
add_film, 75
add_glass_catalog, 74
add_ineq, 94
add_myglass, 71
add_path, 62
add_ray, 82
air_index, 75
all_films_z1_recipies, 101
blank, 65
cd, 61
change_surf, 77
check_globals, 55
copy_zoom, 40
cost, 97
del_film, 76
del_glb_ref, 81
del_myglass, 73
del_path, 62
del_ray, 82
del_reaction, 47
del_tol, 50
del_zoom, 40
del, 44

dezoom_pwl, 68
dezoom_stop, 80
dezoom, 46
display_zoom, 41
editfile, 64
exit, 52
find_a_path, 63
first_order, 90
freeze, 49
general_equality_test, 54
get_cores, 52
get_cost, 98
get_glass_info, 73
get_label, 44
get_medium, 75
get_pwl, 68
get_stop, 79
get_tol, 50
get, 45
global_ref_map, 101
help, 52
hist_table, 56
indexo, 78
ins_fld, 66
ins_surf, 77
ins_wl, 67
ins_zoom, 39

153

INDEX COPHASAL

is_pwl_zoomed, 68
is_reacting, 48
is_stop_zoomed, 80
is_tolerating, 50
is_variable, 49
is_zoomed, 46
iterate_all_chiefs, 69
iterate_marginals, 69
kind_of, 98
list_all, 53
list_films, 76
list_fo, 69
list_glass_info, 73
list_glb_position, 81
list_glb_refs, 81
list_gvr, 61
list_loaded_glasses, 75
list_myglasses, 74
list_paths, 62
list_ray, 87
list_reacts, 41
list_tbl, 54
list_tols, 42
list_undostack, 64
list_vars, 42
list_zooms, 41
list, 50
ls, 62
num_of_user_rays, 83
num_of, 44
num_zooms, 39
omega, 79
ordinal, 45
pause_undo, 64
pim_reaction, 69
plot, 55
prm_state, 99
profile_data, 78

pwd, 61
qualify_filename, 63
ray_dir, 86
ray_endinfo, 83
ray_info, 85
ray_opd, 85
ray_pos, 86
reaction_source, 48
redo, 64
ref_status, 70
remove_glass_catalog, 74
reset_user_rays, 83
runfile, 63
savefile, 64
scale_lens, 66
scale_tols, 43
set_abs_tol, 96
set_cores, 53
set_cost_params, 97
set_cost, 94
set_glb_ref, 80
set_label, 44
set_local_solver, 95
set_max_eval, 96
set_numeric_precision, 53
set_param, 95
set_pop, 95
set_pwl, 67
set_reaction, 47
set_rel_tol, 95
set_stop, 79
set_time_limit, 96
set_tol, 49
set_verbose, 97
set_zooms, 39
set, 45
showlens, 58
solve, 97

INDEX COPHASAL

spot_data, 91
stack_calc, 87
stop_surface_list, 101
sys_dezoom, 40
tbl2str, 53
touch, 43
undo, 64

unpause_undo, 64
vary, 48
zoom_pwl, 68
zoom_stop, 80
zoom, 46

user setup, 13

References

[1] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Cambridge Univer-
sity Press, 1999.

[2] G. W. Forbes. “Robust and fast computation for the polynomials of
optics”. In: Opt. Express 18.13 (June 2010), pp. 13851–13862. doi: 10.
1364/OE.18.013851. url: https://opg.optica.org/oe/abstract.
cfm?URI=oe-18-13-13851.

[3] G. W. Forbes. “Shape specification for axially symmetric optical sur-
faces”. In: Opt. Express 15.8 (Apr. 2007), pp. 5218–5226. doi: 10.1364/
OE.15.005218. url: https://opg.optica.org/oe/abstract.cfm?
URI=oe-15-8-5218.

[4] A. Gerrard and J.M. Burch. Introduction to Matrix Methods in Optics.
Dover Books on Physics. Dover, 1994.

[5] R. Ierusalimschy. Programming in Lua. 4th ed. Lua.org, 2016.

[6] Steven G. Johnson. The NLopt nonlinear-optimization package. https:
//github.com/stevengj/nlopt. 2007.

[7] F. Kohlrausch. Praktische Physik vol 1. B.G. Teubner, 1968.

[8] Lua. https://www.lua.org/.

[9] The SCHOTT Group. TIE-19 Temperature Coefficient of the Refractive
Index.

156

https://doi.org/10.1364/OE.18.013851
https://doi.org/10.1364/OE.18.013851
https://opg.optica.org/oe/abstract.cfm?URI=oe-18-13-13851
https://opg.optica.org/oe/abstract.cfm?URI=oe-18-13-13851
https://doi.org/10.1364/OE.15.005218
https://doi.org/10.1364/OE.15.005218
https://opg.optica.org/oe/abstract.cfm?URI=oe-15-8-5218
https://opg.optica.org/oe/abstract.cfm?URI=oe-15-8-5218
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://www.lua.org/

	Release Note
	Introduction
	Conventions
	Polarization
	Thin Film

	Units
	System Requirements
	Installation
	License

	User Interface
	User Setup
	Support

	Quick Start Example
	Blank Lens
	Singlet Start
	Singlet Start Performance
	Optimization
	Final Performance
	List Ray
	Paraxial Image Location

	Lua Primer
	Global and Local Scope
	Nil
	Lexical Scoping
	Types and Values
	Basic Operations
	Logical Operations
	Arithmetic Operations
	Relational Operations
	Bitwise Operations
	Strings
	Tables
	Functions
	Control Structures
	Understanding Error Messages

	Command Line Interface
	Parametric Actions
	Zoomers
	Reactors
	Variators
	Parameter Functions
	Alternative Compact Interface

	Utilities
	General Utility Functions
	Data Display Functions
	File System Functions
	Undo
	Lens Utilities

	System Settings
	Fields
	Wavelengths
	Reference Rays

	Glasses
	Films
	Surfaces
	Surface Related
	Stop Related
	Global Referencing

	Rays
	User Rays
	Ray Information

	Analysis
	Thin Film
	First Order
	Geometric

	Optimization
	Solver Setup
	Cost Function, Builtin

	Tolerance Analysis
	Script Generators

	System Settings
	System Parameters
	Pupil
	Polarization
	Meridional Plane Selection
	Focal Mode Selection

	Wavelengths
	Fields
	Vignetting Factors

	Reference Rays

	Glasses
	Index of Refraction
	Interpolate
	Gases
	Sellmeier

	Absorption
	Interpolate
	Ordinary

	Environmental Adjustments
	Schott DNDT Equation
	Thermal Expansion, Omega

	Catalog Glasses
	Provided Catalogs

	Thin Films
	Layer Parameters
	Optimization Example

	Surfaces
	Surface Lists
	Non-Sequential
	Sequential

	Common Surface Parameters
	Coordinate System
	Reposition
	Global Referencing
	Best Practice

	Optical Properties
	Refract Mode
	Diffractive Properties
	Thin Film and Related Properties
	Apodization

	Aperture
	Automatic Aperture
	User Defined Apertures

	Ignore Surface

	Surface Types
	Sphere
	Conic
	QCON Asphere
	Toric
	NSIN and NSOUT

	Analysis
	Ray Tracing and Analysis
	Starting of Rays

	First Order Analysis
	Geometric Analysis
	Spot Size

	Thin Film Analysis

	Optimization
	Constrained Optimization Example
	Solver Data Type
	Solver Algorithms
	Settings

	Cost Functions, Builtin

	Tolerancing
	Monte Carlo Simulations

	Error Codes
	Ray Trace Errors
	Index Calculation Errors

	Software Libraries Used
	Index

